{"title":"强相互作用驱动耗散费米气体中的非平衡 BCS-BEC 交叉和非常规 FFLO 超流体","authors":"Taira Kawamura, Yoji Ohashi","doi":"10.1007/s43673-024-00137-3","DOIUrl":null,"url":null,"abstract":"<div><p>We present a theoretical review of the recent progress in non-equilibrium BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover physics. As a paradigmatic example, we consider a strongly interacting driven-dissipative two-component Fermi gas where the non-equilibrium steady state is tuned by adjusting the chemical potential difference between two reservoirs that are coupled with the system. As a powerful theoretical tool to deal with this system, we employ the Schwinger-Keldysh Green’s function technique. We systematically evaluate the superfluid transition, as well as the single-particle properties, in the non-equilibrium BCS-BEC crossover region, by adjusting the chemical potential difference between the reservoirs and the strength of an <i>s</i>-wave pairing interaction associated with a Feshbach resonance. In the weak-coupling BCS side, the chemical potential difference is shown to imprint a two-step structure on the particle momentum distribution, leading to an anomalous enhancement of pseudogap, as well as the emergence of exotic Fulde-Ferrell-Larkin-Ovchinnikov-type superfluid instability. Since various non-equilibrium situations have recently been realized in ultracold Fermi gases, the theoretical understanding of non-equilibrium BCS-BEC crossover physics would become increasingly important in this research field.</p></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-024-00137-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Non-equilibrium BCS-BEC crossover and unconventional FFLO superfluid in a strongly interacting driven-dissipative Fermi gas\",\"authors\":\"Taira Kawamura, Yoji Ohashi\",\"doi\":\"10.1007/s43673-024-00137-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a theoretical review of the recent progress in non-equilibrium BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover physics. As a paradigmatic example, we consider a strongly interacting driven-dissipative two-component Fermi gas where the non-equilibrium steady state is tuned by adjusting the chemical potential difference between two reservoirs that are coupled with the system. As a powerful theoretical tool to deal with this system, we employ the Schwinger-Keldysh Green’s function technique. We systematically evaluate the superfluid transition, as well as the single-particle properties, in the non-equilibrium BCS-BEC crossover region, by adjusting the chemical potential difference between the reservoirs and the strength of an <i>s</i>-wave pairing interaction associated with a Feshbach resonance. In the weak-coupling BCS side, the chemical potential difference is shown to imprint a two-step structure on the particle momentum distribution, leading to an anomalous enhancement of pseudogap, as well as the emergence of exotic Fulde-Ferrell-Larkin-Ovchinnikov-type superfluid instability. Since various non-equilibrium situations have recently been realized in ultracold Fermi gases, the theoretical understanding of non-equilibrium BCS-BEC crossover physics would become increasingly important in this research field.</p></div>\",\"PeriodicalId\":100007,\"journal\":{\"name\":\"AAPPS Bulletin\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43673-024-00137-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPPS Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43673-024-00137-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-024-00137-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-equilibrium BCS-BEC crossover and unconventional FFLO superfluid in a strongly interacting driven-dissipative Fermi gas
We present a theoretical review of the recent progress in non-equilibrium BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover physics. As a paradigmatic example, we consider a strongly interacting driven-dissipative two-component Fermi gas where the non-equilibrium steady state is tuned by adjusting the chemical potential difference between two reservoirs that are coupled with the system. As a powerful theoretical tool to deal with this system, we employ the Schwinger-Keldysh Green’s function technique. We systematically evaluate the superfluid transition, as well as the single-particle properties, in the non-equilibrium BCS-BEC crossover region, by adjusting the chemical potential difference between the reservoirs and the strength of an s-wave pairing interaction associated with a Feshbach resonance. In the weak-coupling BCS side, the chemical potential difference is shown to imprint a two-step structure on the particle momentum distribution, leading to an anomalous enhancement of pseudogap, as well as the emergence of exotic Fulde-Ferrell-Larkin-Ovchinnikov-type superfluid instability. Since various non-equilibrium situations have recently been realized in ultracold Fermi gases, the theoretical understanding of non-equilibrium BCS-BEC crossover physics would become increasingly important in this research field.