{"title":"气相化学反应速率常数随温度变化的两种估算方法分析","authors":"M. F. Danilov","doi":"10.1134/S0015462824602638","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the issues of the structural-parametric identification of kinetic models intended for the mathematical modeling of physical and chemical processes in gas dynamics are discussed. Two methods to estimate the temperature dependence of the rate constants of gas-phase chemical reactions are analyzed: the standard model based on the well-known Arrhenius formula and a new one proposed relatively recently. The focus of the article is on the basic parameter of the temperature dependence of the rate constants, i.e., the activation energy. The values of activation energy for combustion reactions of a mixture of hydrogen and oxygen that are obtained by approximation of the experimental data based on the Arrhenius formula, calculations based on the theory of the transition state, and values of activation energy obtained using a new model are compared. According to this model, the activation energy for exothermic reactions is always zero, while the activation energy for endothermic reactions is determined by the difference between the potential energies of the final and initial states in the given reaction and is numerically equal to its absolute value. The application of this method for estimating the activation energy is shown to produce results that are in good agreement with the empirical data.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"59 4","pages":"875 - 886"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Two Methods for Estimating the Temperature Dependence of the Gas-Phase Chemical Reaction Rate Constants\",\"authors\":\"M. F. Danilov\",\"doi\":\"10.1134/S0015462824602638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the issues of the structural-parametric identification of kinetic models intended for the mathematical modeling of physical and chemical processes in gas dynamics are discussed. Two methods to estimate the temperature dependence of the rate constants of gas-phase chemical reactions are analyzed: the standard model based on the well-known Arrhenius formula and a new one proposed relatively recently. The focus of the article is on the basic parameter of the temperature dependence of the rate constants, i.e., the activation energy. The values of activation energy for combustion reactions of a mixture of hydrogen and oxygen that are obtained by approximation of the experimental data based on the Arrhenius formula, calculations based on the theory of the transition state, and values of activation energy obtained using a new model are compared. According to this model, the activation energy for exothermic reactions is always zero, while the activation energy for endothermic reactions is determined by the difference between the potential energies of the final and initial states in the given reaction and is numerically equal to its absolute value. The application of this method for estimating the activation energy is shown to produce results that are in good agreement with the empirical data.</p>\",\"PeriodicalId\":560,\"journal\":{\"name\":\"Fluid Dynamics\",\"volume\":\"59 4\",\"pages\":\"875 - 886\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0015462824602638\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462824602638","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Analysis of Two Methods for Estimating the Temperature Dependence of the Gas-Phase Chemical Reaction Rate Constants
In this paper, the issues of the structural-parametric identification of kinetic models intended for the mathematical modeling of physical and chemical processes in gas dynamics are discussed. Two methods to estimate the temperature dependence of the rate constants of gas-phase chemical reactions are analyzed: the standard model based on the well-known Arrhenius formula and a new one proposed relatively recently. The focus of the article is on the basic parameter of the temperature dependence of the rate constants, i.e., the activation energy. The values of activation energy for combustion reactions of a mixture of hydrogen and oxygen that are obtained by approximation of the experimental data based on the Arrhenius formula, calculations based on the theory of the transition state, and values of activation energy obtained using a new model are compared. According to this model, the activation energy for exothermic reactions is always zero, while the activation energy for endothermic reactions is determined by the difference between the potential energies of the final and initial states in the given reaction and is numerically equal to its absolute value. The application of this method for estimating the activation energy is shown to produce results that are in good agreement with the empirical data.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.