基于最小二乘支持向量机的建筑暖通空调能耗预测

Q2 Energy
Xin Wan, Xiaoling Cai, Lele Dai
{"title":"基于最小二乘支持向量机的建筑暖通空调能耗预测","authors":"Xin Wan,&nbsp;Xiaoling Cai,&nbsp;Lele Dai","doi":"10.1186/s42162-024-00417-0","DOIUrl":null,"url":null,"abstract":"<div><p>Air conditioning, as an essential appliance in daily life, has the function of ensuring comfortable room temperature, but it is also accompanied by a large amount of power consumption. Consequently, the study suggests an energy consumption prediction model based on improved genetic algorithm—least squares support vector machine—to accurately predict the energy consumption of building heating, ventilation, and air conditioning. This model uses the improved genetic algorithm for regularization parameter and kernel parameter optimization to prevent overfitting and underfitting issues. According to the testing results, the least squares support vector machine, an upgraded genetic algorithm, may accomplish convergence faster than other algorithms, taking only 0.2 milliseconds to finish. In addition, the average relative error of the improved genetic algorithm- least squares support vector machine did not exceed 0.6%. In the energy consumption prediction for the whole year of 2022, the average error of the improved genetic algorithm-least squares support vector machine was only 2.0 × 10<sup>6</sup> kWh, and the prediction accuracy could reach up to 97.2%. The above outcomes revealed that the energy consumption prediction model can accurately predict the air conditioning energy consumption, which provides a strong support for the control and optimization of the air conditioning system.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00417-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Prediction of building HVAC energy consumption based on least squares support vector machines\",\"authors\":\"Xin Wan,&nbsp;Xiaoling Cai,&nbsp;Lele Dai\",\"doi\":\"10.1186/s42162-024-00417-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Air conditioning, as an essential appliance in daily life, has the function of ensuring comfortable room temperature, but it is also accompanied by a large amount of power consumption. Consequently, the study suggests an energy consumption prediction model based on improved genetic algorithm—least squares support vector machine—to accurately predict the energy consumption of building heating, ventilation, and air conditioning. This model uses the improved genetic algorithm for regularization parameter and kernel parameter optimization to prevent overfitting and underfitting issues. According to the testing results, the least squares support vector machine, an upgraded genetic algorithm, may accomplish convergence faster than other algorithms, taking only 0.2 milliseconds to finish. In addition, the average relative error of the improved genetic algorithm- least squares support vector machine did not exceed 0.6%. In the energy consumption prediction for the whole year of 2022, the average error of the improved genetic algorithm-least squares support vector machine was only 2.0 × 10<sup>6</sup> kWh, and the prediction accuracy could reach up to 97.2%. The above outcomes revealed that the energy consumption prediction model can accurately predict the air conditioning energy consumption, which provides a strong support for the control and optimization of the air conditioning system.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s42162-024-00417-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-024-00417-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00417-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

空调作为日常生活中必不可少的电器,具有保证舒适室温的功能,但同时也伴随着大量的电能消耗。因此,本研究提出了一种基于改进遗传算法-最小二乘支持向量机的能耗预测模型,以准确预测建筑供暖、通风和空调的能耗。该模型采用改进遗传算法对正则化参数和核参数进行优化,以防止出现过拟合和欠拟合问题。测试结果表明,作为升级版遗传算法的最小二乘支持向量机收敛速度比其他算法更快,仅需 0.2 毫秒即可完成收敛。此外,改进遗传算法-最小二乘支持向量机的平均相对误差不超过 0.6%。在 2022 年全年的能耗预测中,改进遗传算法-最小二乘支持向量机的平均误差仅为 2.0 × 106 kWh,预测准确率高达 97.2%。上述结果表明,能耗预测模型能够准确预测空调能耗,为空调系统的控制和优化提供了有力支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of building HVAC energy consumption based on least squares support vector machines

Air conditioning, as an essential appliance in daily life, has the function of ensuring comfortable room temperature, but it is also accompanied by a large amount of power consumption. Consequently, the study suggests an energy consumption prediction model based on improved genetic algorithm—least squares support vector machine—to accurately predict the energy consumption of building heating, ventilation, and air conditioning. This model uses the improved genetic algorithm for regularization parameter and kernel parameter optimization to prevent overfitting and underfitting issues. According to the testing results, the least squares support vector machine, an upgraded genetic algorithm, may accomplish convergence faster than other algorithms, taking only 0.2 milliseconds to finish. In addition, the average relative error of the improved genetic algorithm- least squares support vector machine did not exceed 0.6%. In the energy consumption prediction for the whole year of 2022, the average error of the improved genetic algorithm-least squares support vector machine was only 2.0 × 106 kWh, and the prediction accuracy could reach up to 97.2%. The above outcomes revealed that the energy consumption prediction model can accurately predict the air conditioning energy consumption, which provides a strong support for the control and optimization of the air conditioning system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信