推进驾驶员行为识别:利用 ResNet 的智能方法

IF 0.6 Q4 AUTOMATION & CONTROL SYSTEMS
Haiyan Kang, Congming Zhang, Hongling Jiang
{"title":"推进驾驶员行为识别:利用 ResNet 的智能方法","authors":"Haiyan Kang,&nbsp;Congming Zhang,&nbsp;Hongling Jiang","doi":"10.3103/S0146411624700664","DOIUrl":null,"url":null,"abstract":"<p>In pursuit of enhancing public safety and addressing challenges in driver behavior recognition, an intelligent recognition and detection method of driver behavior based on ResNet (IRDMDB-ResNet) is proposed. The approach aims to identify instances of distracted driving resulting from abnormal behavior. Three models (IRDMDB-1, IRDMDB-2, and IRDMDB-3) are presented to implement this method, which is adapted to a deep learning behavior recognition in driving scenarios. Firstly, this study utilizes two well-tested real datasets: Driver Drowsiness Dataset and The State Farm. These datasets undergo preprocessing to meet the input requirements of the model. Secondly, a lightweight convolutional neural network model has been designed to extract features, aiding the warning system in delivering precise information and minimizing traffic collisions to the maximum extent possible. Finally, the model is evaluated based on the confusion metrics, accuracy, precision, recall, and F1-score criterion. As a result, the IRDMDB-3 model proposed in this paper can recognize and detect driver behavior effectively and stably. And it achieves 99.79% of accuracy in the classification of distracted drivers looking elsewhere in The State Farm dataset. Similarly, the detection at Driver Drowsiness Dataset is 99.68%. This advancement represents a significant improvement in traffic safety, showcasing adaptability to diverse behaviors and remarkable recognition and detection capabilities.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"58 5","pages":"555 - 568"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Driver Behavior Recognition: An Intelligent Approach Utilizing ResNet\",\"authors\":\"Haiyan Kang,&nbsp;Congming Zhang,&nbsp;Hongling Jiang\",\"doi\":\"10.3103/S0146411624700664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In pursuit of enhancing public safety and addressing challenges in driver behavior recognition, an intelligent recognition and detection method of driver behavior based on ResNet (IRDMDB-ResNet) is proposed. The approach aims to identify instances of distracted driving resulting from abnormal behavior. Three models (IRDMDB-1, IRDMDB-2, and IRDMDB-3) are presented to implement this method, which is adapted to a deep learning behavior recognition in driving scenarios. Firstly, this study utilizes two well-tested real datasets: Driver Drowsiness Dataset and The State Farm. These datasets undergo preprocessing to meet the input requirements of the model. Secondly, a lightweight convolutional neural network model has been designed to extract features, aiding the warning system in delivering precise information and minimizing traffic collisions to the maximum extent possible. Finally, the model is evaluated based on the confusion metrics, accuracy, precision, recall, and F1-score criterion. As a result, the IRDMDB-3 model proposed in this paper can recognize and detect driver behavior effectively and stably. And it achieves 99.79% of accuracy in the classification of distracted drivers looking elsewhere in The State Farm dataset. Similarly, the detection at Driver Drowsiness Dataset is 99.68%. This advancement represents a significant improvement in traffic safety, showcasing adaptability to diverse behaviors and remarkable recognition and detection capabilities.</p>\",\"PeriodicalId\":46238,\"journal\":{\"name\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"volume\":\"58 5\",\"pages\":\"555 - 568\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0146411624700664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411624700664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

为了提高公共安全和应对驾驶员行为识别方面的挑战,本文提出了一种基于 ResNet 的驾驶员行为智能识别和检测方法(IRDMDB-ResNet)。该方法旨在识别异常行为导致的分心驾驶实例。为实现该方法,提出了三个模型(IRDMDB-1、IRDMDB-2 和 IRDMDB-3),该方法适用于驾驶场景中的深度学习行为识别。首先,本研究使用了两个经过充分测试的真实数据集:驾驶员昏昏欲睡数据集》和《州立农场》。这些数据集经过预处理,以满足模型的输入要求。其次,设计了一个轻量级卷积神经网络模型来提取特征,帮助预警系统提供精确信息,最大限度地减少交通碰撞。最后,根据混淆度量、准确度、精确度、召回率和 F1 分数标准对模型进行评估。结果表明,本文提出的 IRDMDB-3 模型能够有效、稳定地识别和检测驾驶员行为。在 The State Farm 数据集中,该模型对分心驾驶员的分类准确率达到了 99.79%。同样,在驾驶员昏昏欲睡数据集上的检测准确率也达到了 99.68%。这一进步代表着交通安全方面的重大改进,展示了对各种行为的适应性以及卓越的识别和检测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advancing Driver Behavior Recognition: An Intelligent Approach Utilizing ResNet

Advancing Driver Behavior Recognition: An Intelligent Approach Utilizing ResNet

In pursuit of enhancing public safety and addressing challenges in driver behavior recognition, an intelligent recognition and detection method of driver behavior based on ResNet (IRDMDB-ResNet) is proposed. The approach aims to identify instances of distracted driving resulting from abnormal behavior. Three models (IRDMDB-1, IRDMDB-2, and IRDMDB-3) are presented to implement this method, which is adapted to a deep learning behavior recognition in driving scenarios. Firstly, this study utilizes two well-tested real datasets: Driver Drowsiness Dataset and The State Farm. These datasets undergo preprocessing to meet the input requirements of the model. Secondly, a lightweight convolutional neural network model has been designed to extract features, aiding the warning system in delivering precise information and minimizing traffic collisions to the maximum extent possible. Finally, the model is evaluated based on the confusion metrics, accuracy, precision, recall, and F1-score criterion. As a result, the IRDMDB-3 model proposed in this paper can recognize and detect driver behavior effectively and stably. And it achieves 99.79% of accuracy in the classification of distracted drivers looking elsewhere in The State Farm dataset. Similarly, the detection at Driver Drowsiness Dataset is 99.68%. This advancement represents a significant improvement in traffic safety, showcasing adaptability to diverse behaviors and remarkable recognition and detection capabilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AUTOMATIC CONTROL AND COMPUTER SCIENCES
AUTOMATIC CONTROL AND COMPUTER SCIENCES AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.70
自引率
22.20%
发文量
47
期刊介绍: Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信