AlabOS:基于 Python 的自主实验室可重构工作流程管理框架

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuxing Fei, Bernardus Rendy, Rishi Kumar, Olympia Dartsi, Hrushikesh P. Sahasrabuddhe, Matthew J. McDermott, Zheren Wang, Nathan J. Szymanski, Lauren N. Walters, David Milsted, Yan Zeng, Anubhav Jain and Gerbrand Ceder
{"title":"AlabOS:基于 Python 的自主实验室可重构工作流程管理框架","authors":"Yuxing Fei, Bernardus Rendy, Rishi Kumar, Olympia Dartsi, Hrushikesh P. Sahasrabuddhe, Matthew J. McDermott, Zheren Wang, Nathan J. Szymanski, Lauren N. Walters, David Milsted, Yan Zeng, Anubhav Jain and Gerbrand Ceder","doi":"10.1039/D4DD00129J","DOIUrl":null,"url":null,"abstract":"<p >The recent advent of autonomous laboratories, coupled with algorithms for high-throughput screening and active learning, promises to accelerate materials discovery and innovation. As these autonomous systems grow in complexity, the demand for robust and efficient workflow management software becomes increasingly critical. In this paper, we introduce AlabOS, a general-purpose software framework for orchestrating experiments and managing resources, with an emphasis on automated laboratories for materials synthesis and characterization. AlabOS features a reconfigurable experiment workflow model and a resource reservation mechanism, enabling the simultaneous execution of varied workflows composed of modular tasks while eliminating conflicts between tasks. To showcase its capability, we demonstrate the implementation of AlabOS in a prototype autonomous materials laboratory, the A-Lab, with around 3500 samples synthesized over 1.5 years.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 11","pages":" 2275-2288"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00129j?page=search","citationCount":"0","resultStr":"{\"title\":\"AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories\",\"authors\":\"Yuxing Fei, Bernardus Rendy, Rishi Kumar, Olympia Dartsi, Hrushikesh P. Sahasrabuddhe, Matthew J. McDermott, Zheren Wang, Nathan J. Szymanski, Lauren N. Walters, David Milsted, Yan Zeng, Anubhav Jain and Gerbrand Ceder\",\"doi\":\"10.1039/D4DD00129J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The recent advent of autonomous laboratories, coupled with algorithms for high-throughput screening and active learning, promises to accelerate materials discovery and innovation. As these autonomous systems grow in complexity, the demand for robust and efficient workflow management software becomes increasingly critical. In this paper, we introduce AlabOS, a general-purpose software framework for orchestrating experiments and managing resources, with an emphasis on automated laboratories for materials synthesis and characterization. AlabOS features a reconfigurable experiment workflow model and a resource reservation mechanism, enabling the simultaneous execution of varied workflows composed of modular tasks while eliminating conflicts between tasks. To showcase its capability, we demonstrate the implementation of AlabOS in a prototype autonomous materials laboratory, the A-Lab, with around 3500 samples synthesized over 1.5 years.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 11\",\"pages\":\" 2275-2288\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00129j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00129j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00129j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近出现的自主实验室,加上高通量筛选和主动学习算法,有望加速材料发现和创新。随着这些自主系统的复杂性不断增加,对强大而高效的工作流管理软件的需求也变得越来越迫切。在本文中,我们将介绍 AlabOS,这是一个用于协调实验和管理资源的通用软件框架,重点是用于材料合成和表征的自动化实验室。AlabOS 具有可重新配置的实验工作流模型和资源预留机制,可同时执行由模块任务组成的各种工作流,同时消除任务之间的冲突。为了展示 AlabOS 的能力,我们在一个自主材料实验室原型(A-Lab)中演示了 AlabOS 的实施,在一年半的时间里合成了约 3500 个样品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories

AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories

The recent advent of autonomous laboratories, coupled with algorithms for high-throughput screening and active learning, promises to accelerate materials discovery and innovation. As these autonomous systems grow in complexity, the demand for robust and efficient workflow management software becomes increasingly critical. In this paper, we introduce AlabOS, a general-purpose software framework for orchestrating experiments and managing resources, with an emphasis on automated laboratories for materials synthesis and characterization. AlabOS features a reconfigurable experiment workflow model and a resource reservation mechanism, enabling the simultaneous execution of varied workflows composed of modular tasks while eliminating conflicts between tasks. To showcase its capability, we demonstrate the implementation of AlabOS in a prototype autonomous materials laboratory, the A-Lab, with around 3500 samples synthesized over 1.5 years.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信