{"title":"网络平台上人工智能系统变更管理和模型改进的功能要求和检查项目研究","authors":"Dongsoo Moon;Seongjin Ahn","doi":"10.13052/jwe1540-9589.2366","DOIUrl":null,"url":null,"abstract":"The rapid adoption of artificial intelligence (AI) on the web platform across multiple sectors has highlighted not only its inherent technical hurdles, such as unpredictability and lack of transparency, but also significant societal concerns. These include the misuse of AI technology, invasions of privacy, discrimination fueled by biased data, and infringements of copyright. Such challenges jeopardize the sustainable growth of AI and risk the erosion of societal trust, industry adoption and financial investment. This analysis explores the AI system's lifecycle, emphasizing the essential continuous monitoring and the need for creating trustworthy AI technologies. It advocates for an ethically oriented development process to mitigate adverse effects and support sustainable progress. The dynamic and unpredictable nature of AI, compounded by variable data inputs and evolving distributions, requires consistent model updates and retraining to preserve the integrity of services. Addressing the ethical aspects, this paper outlines specific guidelines and evaluation criteria for AI development, proposing an adaptable feed-back loop for model improvement. This method aims to detect and rectify performance declines through prompt retraining, thereby cultivating robust, ethically sound AI systems. Such systems are expected to maintain performance while ensuring user trust and adhering to data science and web technology standards. Ultimately, the study seeks to balance AI's technological advancements with societal ethics and values, ensuring its role as a positive, reliable force across different industries. This balance is crucial for harmonizing innovation with the ethical use of data and science, thereby facilitating a future where AI contributes significantly and responsibly to societal well-being.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"23 6","pages":"831-848"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747166","citationCount":"0","resultStr":"{\"title\":\"A Study on Functional Requirements and Inspection Items for AI System Change Management and Model Improvement on the Web Platform\",\"authors\":\"Dongsoo Moon;Seongjin Ahn\",\"doi\":\"10.13052/jwe1540-9589.2366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid adoption of artificial intelligence (AI) on the web platform across multiple sectors has highlighted not only its inherent technical hurdles, such as unpredictability and lack of transparency, but also significant societal concerns. These include the misuse of AI technology, invasions of privacy, discrimination fueled by biased data, and infringements of copyright. Such challenges jeopardize the sustainable growth of AI and risk the erosion of societal trust, industry adoption and financial investment. This analysis explores the AI system's lifecycle, emphasizing the essential continuous monitoring and the need for creating trustworthy AI technologies. It advocates for an ethically oriented development process to mitigate adverse effects and support sustainable progress. The dynamic and unpredictable nature of AI, compounded by variable data inputs and evolving distributions, requires consistent model updates and retraining to preserve the integrity of services. Addressing the ethical aspects, this paper outlines specific guidelines and evaluation criteria for AI development, proposing an adaptable feed-back loop for model improvement. This method aims to detect and rectify performance declines through prompt retraining, thereby cultivating robust, ethically sound AI systems. Such systems are expected to maintain performance while ensuring user trust and adhering to data science and web technology standards. Ultimately, the study seeks to balance AI's technological advancements with societal ethics and values, ensuring its role as a positive, reliable force across different industries. This balance is crucial for harmonizing innovation with the ethical use of data and science, thereby facilitating a future where AI contributes significantly and responsibly to societal well-being.\",\"PeriodicalId\":49952,\"journal\":{\"name\":\"Journal of Web Engineering\",\"volume\":\"23 6\",\"pages\":\"831-848\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747166\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Web Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10747166/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10747166/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A Study on Functional Requirements and Inspection Items for AI System Change Management and Model Improvement on the Web Platform
The rapid adoption of artificial intelligence (AI) on the web platform across multiple sectors has highlighted not only its inherent technical hurdles, such as unpredictability and lack of transparency, but also significant societal concerns. These include the misuse of AI technology, invasions of privacy, discrimination fueled by biased data, and infringements of copyright. Such challenges jeopardize the sustainable growth of AI and risk the erosion of societal trust, industry adoption and financial investment. This analysis explores the AI system's lifecycle, emphasizing the essential continuous monitoring and the need for creating trustworthy AI technologies. It advocates for an ethically oriented development process to mitigate adverse effects and support sustainable progress. The dynamic and unpredictable nature of AI, compounded by variable data inputs and evolving distributions, requires consistent model updates and retraining to preserve the integrity of services. Addressing the ethical aspects, this paper outlines specific guidelines and evaluation criteria for AI development, proposing an adaptable feed-back loop for model improvement. This method aims to detect and rectify performance declines through prompt retraining, thereby cultivating robust, ethically sound AI systems. Such systems are expected to maintain performance while ensuring user trust and adhering to data science and web technology standards. Ultimately, the study seeks to balance AI's technological advancements with societal ethics and values, ensuring its role as a positive, reliable force across different industries. This balance is crucial for harmonizing innovation with the ethical use of data and science, thereby facilitating a future where AI contributes significantly and responsibly to societal well-being.
期刊介绍:
The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.