单细胞转录组揭示人体器官特异性内皮细胞的独特转录组特征

IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Rui-Ze Niu, Hong-Yan Xu, Hui Tian, Dan Zhang, Chun-Yu He, Xiao-Lan Li, Yu-Ye Li, Juan He
{"title":"单细胞转录组揭示人体器官特异性内皮细胞的独特转录组特征","authors":"Rui-Ze Niu, Hong-Yan Xu, Hui Tian, Dan Zhang, Chun-Yu He, Xiao-Lan Li, Yu-Ye Li, Juan He","doi":"10.1007/s00395-024-01087-5","DOIUrl":null,"url":null,"abstract":"<p>The heterogeneity of endothelial cells (ECs) across human tissues remains incompletely inventoried. We constructed an atlas of &gt; 210,000 ECs derived from 38 regions across 24 human tissues. Our analysis reveals significant differences in transcriptome, phenotype, metabolism and transcriptional regulation among ECs from various tissues. Notably, arterial, venous, and lymphatic ECs shared more common markers in multiple tissues than capillary ECs, which exhibited higher heterogeneity. This diversity in capillary ECs suggests their greater potential as targets for drug development. ECs from different tissues and vascular beds were found to be associated with specific diseases. Importantly, tissue specificity of EC senescence is more determined by somatic site than by tissue type (e.g. subcutaneus adipose tissue and visceral adipose tissue). Additionally, sex-specific differences in brain EC senescence were observed. Our EC atlas offers valuble resoursce for identifying EC subclusters in single-cell datasets from body tissues or organoids, facilitating the screen of tissue-specific targeted therapies, and serving as a powerful tool for future discoveries.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell transcriptome unveils unique transcriptomic signatures of human organ-specific endothelial cells\",\"authors\":\"Rui-Ze Niu, Hong-Yan Xu, Hui Tian, Dan Zhang, Chun-Yu He, Xiao-Lan Li, Yu-Ye Li, Juan He\",\"doi\":\"10.1007/s00395-024-01087-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The heterogeneity of endothelial cells (ECs) across human tissues remains incompletely inventoried. We constructed an atlas of &gt; 210,000 ECs derived from 38 regions across 24 human tissues. Our analysis reveals significant differences in transcriptome, phenotype, metabolism and transcriptional regulation among ECs from various tissues. Notably, arterial, venous, and lymphatic ECs shared more common markers in multiple tissues than capillary ECs, which exhibited higher heterogeneity. This diversity in capillary ECs suggests their greater potential as targets for drug development. ECs from different tissues and vascular beds were found to be associated with specific diseases. Importantly, tissue specificity of EC senescence is more determined by somatic site than by tissue type (e.g. subcutaneus adipose tissue and visceral adipose tissue). Additionally, sex-specific differences in brain EC senescence were observed. Our EC atlas offers valuble resoursce for identifying EC subclusters in single-cell datasets from body tissues or organoids, facilitating the screen of tissue-specific targeted therapies, and serving as a powerful tool for future discoveries.</p>\",\"PeriodicalId\":8723,\"journal\":{\"name\":\"Basic Research in Cardiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic Research in Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00395-024-01087-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Research in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00395-024-01087-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

人类组织中内皮细胞(ECs)的异质性仍未得到完整记录。我们构建了一个包含 21 万个内皮细胞的图谱,这些内皮细胞来自 24 种人体组织的 38 个区域。我们的分析揭示了不同组织的 EC 在转录组、表型、代谢和转录调控方面的显著差异。值得注意的是,动脉、静脉和淋巴ECs在多个组织中共享更多的共同标记,而毛细血管ECs则表现出更高的异质性。毛细血管内皮细胞的这种多样性表明它们更有可能成为药物开发的靶点。研究发现,来自不同组织和血管床的细胞与特定疾病相关。重要的是,与组织类型(如皮下脂肪组织和内脏脂肪组织)相比,欧共体衰老的组织特异性更多地取决于躯体部位。此外,还观察到脑部电子脑细胞衰老的性别特异性差异。我们的EC图谱为在来自身体组织或器官组织的单细胞数据集中识别EC亚群提供了宝贵的资源,有助于筛选组织特异性靶向疗法,并可作为未来发现的有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Single-cell transcriptome unveils unique transcriptomic signatures of human organ-specific endothelial cells

Single-cell transcriptome unveils unique transcriptomic signatures of human organ-specific endothelial cells

The heterogeneity of endothelial cells (ECs) across human tissues remains incompletely inventoried. We constructed an atlas of > 210,000 ECs derived from 38 regions across 24 human tissues. Our analysis reveals significant differences in transcriptome, phenotype, metabolism and transcriptional regulation among ECs from various tissues. Notably, arterial, venous, and lymphatic ECs shared more common markers in multiple tissues than capillary ECs, which exhibited higher heterogeneity. This diversity in capillary ECs suggests their greater potential as targets for drug development. ECs from different tissues and vascular beds were found to be associated with specific diseases. Importantly, tissue specificity of EC senescence is more determined by somatic site than by tissue type (e.g. subcutaneus adipose tissue and visceral adipose tissue). Additionally, sex-specific differences in brain EC senescence were observed. Our EC atlas offers valuble resoursce for identifying EC subclusters in single-cell datasets from body tissues or organoids, facilitating the screen of tissue-specific targeted therapies, and serving as a powerful tool for future discoveries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Basic Research in Cardiology
Basic Research in Cardiology 医学-心血管系统
CiteScore
16.30
自引率
5.30%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Basic Research in Cardiology is an international journal for cardiovascular research. It provides a forum for original and review articles related to experimental cardiology that meet its stringent scientific standards. Basic Research in Cardiology regularly receives articles from the fields of - Molecular and Cellular Biology - Biochemistry - Biophysics - Pharmacology - Physiology and Pathology - Clinical Cardiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信