一种协调多个发电机组的自适应特殊保护方案,用于抑制电力系统的自然振荡

IF 3.8 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Tor Inge Reigstad;Salvatore D'Arco;Santiago Sanchez-Acevedo
{"title":"一种协调多个发电机组的自适应特殊保护方案,用于抑制电力系统的自然振荡","authors":"Tor Inge Reigstad;Salvatore D'Arco;Santiago Sanchez-Acevedo","doi":"10.1109/TPWRD.2024.3489026","DOIUrl":null,"url":null,"abstract":"This paper presents a special protection scheme (SPS) that mitigates natural oscillations in the power system by enabling selected adaptive power oscillation damping (APOD) controllers in wind farms or synchronous generators. The SPS activation is triggered by an online power oscillation detection algorithm. Furthermore, to tackle the intricacies of time delays within the control system, an adaptive time delay compensator (ATDC) has been integrated into the SPS control scheme. The SPS is tested on the New England 39 bus system by numerical simulations and in the Nordic 44 system by experimental testing with a hardware-in-the-loop approach. The numerical results show that the proposed SPS can increase the damping of low-frequency natural oscillations (LFOs) significantly and even avoid unstable situations with growing oscillations. Moreover, the laboratory validation demonstrates that the system is able to run in real-time and that the time delays caused by PMU measurements, communication, and computation can be handled correctly. Thus, the proposed SPS concept can possibly be implemented to serve as an additional and automatic tool for the system operators to damp natural power oscillations by coordinated control of multiple sources.","PeriodicalId":13498,"journal":{"name":"IEEE Transactions on Power Delivery","volume":"40 1","pages":"226-236"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Special Protection Scheme Coordinating Multiple Generation Units for Damping Power System Natural Oscillations\",\"authors\":\"Tor Inge Reigstad;Salvatore D'Arco;Santiago Sanchez-Acevedo\",\"doi\":\"10.1109/TPWRD.2024.3489026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a special protection scheme (SPS) that mitigates natural oscillations in the power system by enabling selected adaptive power oscillation damping (APOD) controllers in wind farms or synchronous generators. The SPS activation is triggered by an online power oscillation detection algorithm. Furthermore, to tackle the intricacies of time delays within the control system, an adaptive time delay compensator (ATDC) has been integrated into the SPS control scheme. The SPS is tested on the New England 39 bus system by numerical simulations and in the Nordic 44 system by experimental testing with a hardware-in-the-loop approach. The numerical results show that the proposed SPS can increase the damping of low-frequency natural oscillations (LFOs) significantly and even avoid unstable situations with growing oscillations. Moreover, the laboratory validation demonstrates that the system is able to run in real-time and that the time delays caused by PMU measurements, communication, and computation can be handled correctly. Thus, the proposed SPS concept can possibly be implemented to serve as an additional and automatic tool for the system operators to damp natural power oscillations by coordinated control of multiple sources.\",\"PeriodicalId\":13498,\"journal\":{\"name\":\"IEEE Transactions on Power Delivery\",\"volume\":\"40 1\",\"pages\":\"226-236\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Power Delivery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10746327/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Delivery","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10746327/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive Special Protection Scheme Coordinating Multiple Generation Units for Damping Power System Natural Oscillations
This paper presents a special protection scheme (SPS) that mitigates natural oscillations in the power system by enabling selected adaptive power oscillation damping (APOD) controllers in wind farms or synchronous generators. The SPS activation is triggered by an online power oscillation detection algorithm. Furthermore, to tackle the intricacies of time delays within the control system, an adaptive time delay compensator (ATDC) has been integrated into the SPS control scheme. The SPS is tested on the New England 39 bus system by numerical simulations and in the Nordic 44 system by experimental testing with a hardware-in-the-loop approach. The numerical results show that the proposed SPS can increase the damping of low-frequency natural oscillations (LFOs) significantly and even avoid unstable situations with growing oscillations. Moreover, the laboratory validation demonstrates that the system is able to run in real-time and that the time delays caused by PMU measurements, communication, and computation can be handled correctly. Thus, the proposed SPS concept can possibly be implemented to serve as an additional and automatic tool for the system operators to damp natural power oscillations by coordinated control of multiple sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Power Delivery
IEEE Transactions on Power Delivery 工程技术-工程:电子与电气
CiteScore
9.00
自引率
13.60%
发文量
513
审稿时长
6 months
期刊介绍: The scope of the Society embraces planning, research, development, design, application, construction, installation and operation of apparatus, equipment, structures, materials and systems for the safe, reliable and economic generation, transmission, distribution, conversion, measurement and control of electric energy. It includes the developing of engineering standards, the providing of information and instruction to the public and to legislators, as well as technical scientific, literary, educational and other activities that contribute to the electric power discipline or utilize the techniques or products within this discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信