平面的任意双色包含单色三项算术级数

IF 1 2区 数学 Q1 MATHEMATICS
Gabriel Currier, Kenneth Moore, Chi Hoi Yip
{"title":"平面的任意双色包含单色三项算术级数","authors":"Gabriel Currier, Kenneth Moore, Chi Hoi Yip","doi":"10.1007/s00493-024-00122-2","DOIUrl":null,"url":null,"abstract":"<p>A conjecture of Erdős, Graham, Montgomery, Rothschild, Spencer, and Straus states that, with the exception of equilateral triangles, any two-coloring of the plane will have a monochromatic congruent copy of every three-point configuration. This conjecture is known only for special classes of configurations. In this manuscript, we confirm one of the most natural open cases; that is, every two-coloring of the plane admits a monochromatic congruent copy of any 3-term arithmetic progression.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"62 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Any Two-Coloring of the Plane Contains Monochromatic 3-Term Arithmetic Progressions\",\"authors\":\"Gabriel Currier, Kenneth Moore, Chi Hoi Yip\",\"doi\":\"10.1007/s00493-024-00122-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A conjecture of Erdős, Graham, Montgomery, Rothschild, Spencer, and Straus states that, with the exception of equilateral triangles, any two-coloring of the plane will have a monochromatic congruent copy of every three-point configuration. This conjecture is known only for special classes of configurations. In this manuscript, we confirm one of the most natural open cases; that is, every two-coloring of the plane admits a monochromatic congruent copy of any 3-term arithmetic progression.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00122-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00122-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

厄尔多斯、格雷厄姆、蒙哥马利、罗斯柴尔德、斯宾塞和斯特劳斯的一个猜想指出,除等边三角形外,平面的任何二色都会有一个三点构型的单色全等副本。这一猜想只适用于特殊类别的构型。在本手稿中,我们证实了其中一种最自然的开放情况,即平面的任何二色配置都有任何三项算术级数的单色全等副本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Any Two-Coloring of the Plane Contains Monochromatic 3-Term Arithmetic Progressions

Any Two-Coloring of the Plane Contains Monochromatic 3-Term Arithmetic Progressions

A conjecture of Erdős, Graham, Montgomery, Rothschild, Spencer, and Straus states that, with the exception of equilateral triangles, any two-coloring of the plane will have a monochromatic congruent copy of every three-point configuration. This conjecture is known only for special classes of configurations. In this manuscript, we confirm one of the most natural open cases; that is, every two-coloring of the plane admits a monochromatic congruent copy of any 3-term arithmetic progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信