{"title":"重塑 FOXA1 染色质动力学的小分子","authors":"Khadija Shahed Khan, Billy Wai-Lung Ng","doi":"10.1016/j.molcel.2024.10.019","DOIUrl":null,"url":null,"abstract":"In this issue, Won et al.<span><span><sup>1</sup></span></span> report a covalent ligand binding the pioneer transcription factor FOXA1, altering its function and remodeling chromatin. This important finding highlights the potential of small molecules to modulate transcription factor activity and demonstrates the promise of chemical proteomics in discovering first-in-class ligands.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"5 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A small molecule that reshapes the chromatin dynamics of FOXA1\",\"authors\":\"Khadija Shahed Khan, Billy Wai-Lung Ng\",\"doi\":\"10.1016/j.molcel.2024.10.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this issue, Won et al.<span><span><sup>1</sup></span></span> report a covalent ligand binding the pioneer transcription factor FOXA1, altering its function and remodeling chromatin. This important finding highlights the potential of small molecules to modulate transcription factor activity and demonstrates the promise of chemical proteomics in discovering first-in-class ligands.\",\"PeriodicalId\":18950,\"journal\":{\"name\":\"Molecular Cell\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molcel.2024.10.019\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.10.019","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A small molecule that reshapes the chromatin dynamics of FOXA1
In this issue, Won et al.1 report a covalent ligand binding the pioneer transcription factor FOXA1, altering its function and remodeling chromatin. This important finding highlights the potential of small molecules to modulate transcription factor activity and demonstrates the promise of chemical proteomics in discovering first-in-class ligands.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.