M.A. Hussein , A. Madhan Kumar , M.A. Azeem , N. Ankah , S. Saravanan
{"title":"开发用于牙科植入物的 Ti-Zr-Nb-Ta-Ag 高熵合金:体外腐蚀行为、抗菌效果和表面特性","authors":"M.A. Hussein , A. Madhan Kumar , M.A. Azeem , N. Ankah , S. Saravanan","doi":"10.1016/j.matchemphys.2024.130114","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a new biological high-entropy alloy (Bio-HEA) composed of 35Ti-35Zr-20Nb-5Ta-5Ag (at. %) for potential dental implant applications. The Bio-HEA underwent processing for various durations of mechanical alloying, followed by compaction and sintering. The processed Bio-HEA was tested for corrosion resistance in an artificial saliva medium, antibacterial properties, and surface characteristics. Surface topography and wettability were investigated using atomic force microscopy, surface profilometry, and contact angle measurements. Mechanical alloying, X-ray diffraction, and scanning electron microscopy revealed the formation of a solid-solution Bio-HEA with body-centered cubic crystal structures, with phase variations depending on the processing conditions. The Bio-HEA exhibited significantly higher microhardness values (4.38 GPa and 5.35 GPa) than commercial pure titanium (CPTi) and Ti-6Al-4V alloy, respectively. An increased ball-milling time resulted in higher microhardness for Bio-HEA and enhanced in vitro corrosion resistance in artificial saliva compared to CPTi. This was evidenced by a significant nobler shift of approximately 200 mV in the corrosion potential, with a prominent decrease of approximately two orders of magnitude in the corrosion current density and a higher charge transfer resistance. Additionally, the Bio-HEA demonstrated a lower contact angle compared to that of the Ti-6Al-4V alloy and CPTi. The Bio-HEA achieved antibacterial efficiencies of 91.76 % and 93.0 % compared to Ti-6Al-4V alloy and CPTi, respectively. The enhanced microhardness, antibacterial properties, in vitro corrosion resistance in artificial saliva, and wettability of Bio-HEA compared to commercial Ti-6Al-4V alloy and CPTi makes it a promising candidate for dental bioimplant applications.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130114"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Ti-Zr-Nb-Ta-Ag high entropy alloy for dental implants: In vitro corrosion behavior, antibacterial effect, and surface characteristics\",\"authors\":\"M.A. Hussein , A. Madhan Kumar , M.A. Azeem , N. Ankah , S. Saravanan\",\"doi\":\"10.1016/j.matchemphys.2024.130114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a new biological high-entropy alloy (Bio-HEA) composed of 35Ti-35Zr-20Nb-5Ta-5Ag (at. %) for potential dental implant applications. The Bio-HEA underwent processing for various durations of mechanical alloying, followed by compaction and sintering. The processed Bio-HEA was tested for corrosion resistance in an artificial saliva medium, antibacterial properties, and surface characteristics. Surface topography and wettability were investigated using atomic force microscopy, surface profilometry, and contact angle measurements. Mechanical alloying, X-ray diffraction, and scanning electron microscopy revealed the formation of a solid-solution Bio-HEA with body-centered cubic crystal structures, with phase variations depending on the processing conditions. The Bio-HEA exhibited significantly higher microhardness values (4.38 GPa and 5.35 GPa) than commercial pure titanium (CPTi) and Ti-6Al-4V alloy, respectively. An increased ball-milling time resulted in higher microhardness for Bio-HEA and enhanced in vitro corrosion resistance in artificial saliva compared to CPTi. This was evidenced by a significant nobler shift of approximately 200 mV in the corrosion potential, with a prominent decrease of approximately two orders of magnitude in the corrosion current density and a higher charge transfer resistance. Additionally, the Bio-HEA demonstrated a lower contact angle compared to that of the Ti-6Al-4V alloy and CPTi. The Bio-HEA achieved antibacterial efficiencies of 91.76 % and 93.0 % compared to Ti-6Al-4V alloy and CPTi, respectively. The enhanced microhardness, antibacterial properties, in vitro corrosion resistance in artificial saliva, and wettability of Bio-HEA compared to commercial Ti-6Al-4V alloy and CPTi makes it a promising candidate for dental bioimplant applications.</div></div>\",\"PeriodicalId\":18227,\"journal\":{\"name\":\"Materials Chemistry and Physics\",\"volume\":\"329 \",\"pages\":\"Article 130114\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry and Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254058424012422\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424012422","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of Ti-Zr-Nb-Ta-Ag high entropy alloy for dental implants: In vitro corrosion behavior, antibacterial effect, and surface characteristics
This study presents a new biological high-entropy alloy (Bio-HEA) composed of 35Ti-35Zr-20Nb-5Ta-5Ag (at. %) for potential dental implant applications. The Bio-HEA underwent processing for various durations of mechanical alloying, followed by compaction and sintering. The processed Bio-HEA was tested for corrosion resistance in an artificial saliva medium, antibacterial properties, and surface characteristics. Surface topography and wettability were investigated using atomic force microscopy, surface profilometry, and contact angle measurements. Mechanical alloying, X-ray diffraction, and scanning electron microscopy revealed the formation of a solid-solution Bio-HEA with body-centered cubic crystal structures, with phase variations depending on the processing conditions. The Bio-HEA exhibited significantly higher microhardness values (4.38 GPa and 5.35 GPa) than commercial pure titanium (CPTi) and Ti-6Al-4V alloy, respectively. An increased ball-milling time resulted in higher microhardness for Bio-HEA and enhanced in vitro corrosion resistance in artificial saliva compared to CPTi. This was evidenced by a significant nobler shift of approximately 200 mV in the corrosion potential, with a prominent decrease of approximately two orders of magnitude in the corrosion current density and a higher charge transfer resistance. Additionally, the Bio-HEA demonstrated a lower contact angle compared to that of the Ti-6Al-4V alloy and CPTi. The Bio-HEA achieved antibacterial efficiencies of 91.76 % and 93.0 % compared to Ti-6Al-4V alloy and CPTi, respectively. The enhanced microhardness, antibacterial properties, in vitro corrosion resistance in artificial saliva, and wettability of Bio-HEA compared to commercial Ti-6Al-4V alloy and CPTi makes it a promising candidate for dental bioimplant applications.
期刊介绍:
Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.