粒子群优化先进教学学习技术的模糊混合方法在登革热疾病诊断中的应用

Nivedita , Riddhi Garg , Seema Agrawal , Ajendra Sharma , M.K. Sharma
{"title":"粒子群优化先进教学学习技术的模糊混合方法在登革热疾病诊断中的应用","authors":"Nivedita ,&nbsp;Riddhi Garg ,&nbsp;Seema Agrawal ,&nbsp;Ajendra Sharma ,&nbsp;M.K. Sharma","doi":"10.1016/j.sasc.2024.200160","DOIUrl":null,"url":null,"abstract":"<div><div>Dengue fever is a serious public health issue worldwide, particularly in tropical and subtropical areas. Early detection and accurate diagnosis are essential for effective management and control of the disease. In this study, we present a fuzzy hybrid approach (F-TLBO-APSO) for the detection and diagnosis of dengue disease using an advanced teaching-learning technique with adaptive particle swarm optimization. The proposed method combines the strengths of fuzzy logic, teaching learning-based optimization (TLBO), and adaptive particle swarm optimization (APSO) to improve the accuracy and efficiency of dengue detection based on symptoms. A key challenge addressed is the management of uncertain information existing in the problem. To validate the proposed technique, we applied it to a case study, demonstrating its robustness. The results indicate the versatility of the F-TLBO-APSO algorithm and highlight its value in detecting dengue based on symptoms. Our numerical computations reveal the advantages of the F-TLBO-APSO algorithm compared to TLBO and APSO.</div></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"6 ","pages":"Article 200160"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy hybrid approach for advanced teaching learning technique with particle swarm optimization in the diagnostic of dengue disease\",\"authors\":\"Nivedita ,&nbsp;Riddhi Garg ,&nbsp;Seema Agrawal ,&nbsp;Ajendra Sharma ,&nbsp;M.K. Sharma\",\"doi\":\"10.1016/j.sasc.2024.200160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dengue fever is a serious public health issue worldwide, particularly in tropical and subtropical areas. Early detection and accurate diagnosis are essential for effective management and control of the disease. In this study, we present a fuzzy hybrid approach (F-TLBO-APSO) for the detection and diagnosis of dengue disease using an advanced teaching-learning technique with adaptive particle swarm optimization. The proposed method combines the strengths of fuzzy logic, teaching learning-based optimization (TLBO), and adaptive particle swarm optimization (APSO) to improve the accuracy and efficiency of dengue detection based on symptoms. A key challenge addressed is the management of uncertain information existing in the problem. To validate the proposed technique, we applied it to a case study, demonstrating its robustness. The results indicate the versatility of the F-TLBO-APSO algorithm and highlight its value in detecting dengue based on symptoms. Our numerical computations reveal the advantages of the F-TLBO-APSO algorithm compared to TLBO and APSO.</div></div>\",\"PeriodicalId\":101205,\"journal\":{\"name\":\"Systems and Soft Computing\",\"volume\":\"6 \",\"pages\":\"Article 200160\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772941924000899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941924000899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

登革热是全球范围内一个严重的公共卫生问题,尤其是在热带和亚热带地区。早期检测和准确诊断对于有效管理和控制该疾病至关重要。在这项研究中,我们提出了一种模糊混合方法(F-TLBO-APSO),利用先进的教学-学习技术和自适应粒子群优化来检测和诊断登革热病。所提出的方法结合了模糊逻辑、基于教学的优化(TLBO)和自适应粒子群优化(APSO)的优势,提高了根据症状检测登革热的准确性和效率。所面临的一个关键挑战是如何管理问题中存在的不确定信息。为了验证所提出的技术,我们将其应用于一项案例研究,以证明其稳健性。结果表明了 F-TLBO-APSO 算法的多功能性,并突出了它在根据症状检测登革热方面的价值。我们的数值计算显示了 F-TLBO-APSO 算法与 TLBO 和 APSO 算法相比的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy hybrid approach for advanced teaching learning technique with particle swarm optimization in the diagnostic of dengue disease
Dengue fever is a serious public health issue worldwide, particularly in tropical and subtropical areas. Early detection and accurate diagnosis are essential for effective management and control of the disease. In this study, we present a fuzzy hybrid approach (F-TLBO-APSO) for the detection and diagnosis of dengue disease using an advanced teaching-learning technique with adaptive particle swarm optimization. The proposed method combines the strengths of fuzzy logic, teaching learning-based optimization (TLBO), and adaptive particle swarm optimization (APSO) to improve the accuracy and efficiency of dengue detection based on symptoms. A key challenge addressed is the management of uncertain information existing in the problem. To validate the proposed technique, we applied it to a case study, demonstrating its robustness. The results indicate the versatility of the F-TLBO-APSO algorithm and highlight its value in detecting dengue based on symptoms. Our numerical computations reveal the advantages of the F-TLBO-APSO algorithm compared to TLBO and APSO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信