A. Tonegawa , N. Okada , K. Miura , H. Natsume , K.N. Sato , K. Hoshino , Y. Hayashi , S. Masuzaki , S. Yamoto
{"title":"在分流器模拟器 TPDsheet-ICR 上研究脱离过程中发射强度的空间分布特征","authors":"A. Tonegawa , N. Okada , K. Miura , H. Natsume , K.N. Sato , K. Hoshino , Y. Hayashi , S. Masuzaki , S. Yamoto","doi":"10.1016/j.nme.2024.101802","DOIUrl":null,"url":null,"abstract":"<div><div>For the first time, we have revealed the spatial structure of a detached plasma with electron–ion recombination (EIR) and molecular-activated recombination (MAR) in response to changes in ion temperature (T<sub>i</sub>) and gas pressure. This was achieved using high-density sheet plasma generated by a linear divertor simulator (TPDsheet-ICR). The parallel-plate electrodes were positioned above and below the sheet plasma (∼10<sup>19</sup> m<sup>−3</sup>). We varied the T<sub>i</sub> from 3 to 7 eV using ion cyclotron resonance heating and investigated the parameters of the detached plasma near the target in the divergent field region. Plasma emission intensities at Balmer series (H<sub>α</sub> and H<sub>γ</sub>) and Fulcher band wavelengths (610 ± 10 nm) were measured with a high-speed camera equipped with an Arbaa prism. Additionally, a Langmuir probe measured the electron density and temperature of the plasma. Our results show that as the T<sub>i</sub> increases, EIR generated near the plasma periphery disappears, while MAR gradually forms near the plasma center during the transition from detached to attached plasma. This transition occurs because the increase in T<sub>i</sub> in the detached plasma transfers energy from ions to electrons, raising the high-energy component of the electrons, resulting in EIR disappearance and the onset of MAR.</div></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"41 ","pages":"Article 101802"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of spatial distribution characteristics of emission intensity in detachment on the divertor simulator TPDsheet-ICR\",\"authors\":\"A. Tonegawa , N. Okada , K. Miura , H. Natsume , K.N. Sato , K. Hoshino , Y. Hayashi , S. Masuzaki , S. Yamoto\",\"doi\":\"10.1016/j.nme.2024.101802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For the first time, we have revealed the spatial structure of a detached plasma with electron–ion recombination (EIR) and molecular-activated recombination (MAR) in response to changes in ion temperature (T<sub>i</sub>) and gas pressure. This was achieved using high-density sheet plasma generated by a linear divertor simulator (TPDsheet-ICR). The parallel-plate electrodes were positioned above and below the sheet plasma (∼10<sup>19</sup> m<sup>−3</sup>). We varied the T<sub>i</sub> from 3 to 7 eV using ion cyclotron resonance heating and investigated the parameters of the detached plasma near the target in the divergent field region. Plasma emission intensities at Balmer series (H<sub>α</sub> and H<sub>γ</sub>) and Fulcher band wavelengths (610 ± 10 nm) were measured with a high-speed camera equipped with an Arbaa prism. Additionally, a Langmuir probe measured the electron density and temperature of the plasma. Our results show that as the T<sub>i</sub> increases, EIR generated near the plasma periphery disappears, while MAR gradually forms near the plasma center during the transition from detached to attached plasma. This transition occurs because the increase in T<sub>i</sub> in the detached plasma transfers energy from ions to electrons, raising the high-energy component of the electrons, resulting in EIR disappearance and the onset of MAR.</div></div>\",\"PeriodicalId\":56004,\"journal\":{\"name\":\"Nuclear Materials and Energy\",\"volume\":\"41 \",\"pages\":\"Article 101802\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Materials and Energy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352179124002254\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352179124002254","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
我们首次揭示了具有电子-离子重组(EIR)和分子激活重组(MAR)的分离等离子体的空间结构对离子温度(Ti)和气体压力变化的响应。这是利用线性分流器模拟器(TPDsheet-ICR)产生的高密度片状等离子体实现的。平行板电极位于片状等离子体(1019 m-3)的上方和下方。我们利用离子回旋共振加热将钛从 3 eV 变为 7 eV,并研究了发散场区域目标附近分离等离子体的参数。等离子体在巴尔默波段(Hα 和 Hγ)和富尔彻波段(610 ± 10 nm)的发射强度是通过配备 Arbaa 棱镜的高速相机测量的。此外,朗缪尔探针还测量了等离子体的电子密度和温度。我们的结果表明,随着钛的增加,等离子体外围产生的 EIR 消失了,而 MAR 则在等离子体中心附近从分离等离子体过渡到附着等离子体的过程中逐渐形成。发生这种转变的原因是分离等离子体中 Ti 的增加将能量从离子转移到电子,从而提高了电子的高能分量,导致 EIR 消失和 MAR 开始出现。
Investigation of spatial distribution characteristics of emission intensity in detachment on the divertor simulator TPDsheet-ICR
For the first time, we have revealed the spatial structure of a detached plasma with electron–ion recombination (EIR) and molecular-activated recombination (MAR) in response to changes in ion temperature (Ti) and gas pressure. This was achieved using high-density sheet plasma generated by a linear divertor simulator (TPDsheet-ICR). The parallel-plate electrodes were positioned above and below the sheet plasma (∼1019 m−3). We varied the Ti from 3 to 7 eV using ion cyclotron resonance heating and investigated the parameters of the detached plasma near the target in the divergent field region. Plasma emission intensities at Balmer series (Hα and Hγ) and Fulcher band wavelengths (610 ± 10 nm) were measured with a high-speed camera equipped with an Arbaa prism. Additionally, a Langmuir probe measured the electron density and temperature of the plasma. Our results show that as the Ti increases, EIR generated near the plasma periphery disappears, while MAR gradually forms near the plasma center during the transition from detached to attached plasma. This transition occurs because the increase in Ti in the detached plasma transfers energy from ions to electrons, raising the high-energy component of the electrons, resulting in EIR disappearance and the onset of MAR.
期刊介绍:
The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.