Yuan Huang , Sven A. Holcombe , Stewart C. Wang , Jisi Tang
{"title":"AFSegNet:通过分层特征提炼和多尺度关注与融合进行少量三维踝足骨骼分割","authors":"Yuan Huang , Sven A. Holcombe , Stewart C. Wang , Jisi Tang","doi":"10.1016/j.compmedimag.2024.102456","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate segmentation of ankle and foot bones from CT scans is essential for morphological analysis. Ankle and foot bone segmentation challenges due to the blurred bone boundaries, narrow inter-bone gaps, gaps in the cortical shell, and uneven spongy bone textures. Our study endeavors to create a deep learning framework that harnesses advantages of 3D deep learning and tackles the hurdles in accurately segmenting ankle and foot bones from clinical CT scans. A few-shot framework AFSegNet is proposed considering the computational cost, which comprises three 3D deep-learning networks adhering to the principles of progressing from simple to complex tasks and network structures. Specifically, a shallow network first over-segments the foreground, and along with the foreground ground truth are used to supervise a subsequent network to detect the over-segmented regions, which are overwhelmingly inter-bone gaps. The foreground and inter-bone gap probability map are then input into a network with multi-scale attentions and feature fusion, a loss function combining region-, boundary-, and topology-based terms to get the fine-level bone segmentation. AFSegNet is applied to the 16-class segmentation task utilizing 123 in-house CT scans, which only requires a GPU with 24 GB memory since the three sub-networks can be successively and individually trained. AFSegNet achieves a Dice of 0.953 and average surface distance of 0.207. The ablation study and comparison with two basic state-of-the-art networks indicates the effectiveness of the progressively distilled features, attention and feature fusion modules, and hybrid loss functions, with the mean surface distance error decreased up to 50 %.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"118 ","pages":"Article 102456"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AFSegNet: few-shot 3D ankle-foot bone segmentation via hierarchical feature distillation and multi-scale attention and fusion\",\"authors\":\"Yuan Huang , Sven A. Holcombe , Stewart C. Wang , Jisi Tang\",\"doi\":\"10.1016/j.compmedimag.2024.102456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate segmentation of ankle and foot bones from CT scans is essential for morphological analysis. Ankle and foot bone segmentation challenges due to the blurred bone boundaries, narrow inter-bone gaps, gaps in the cortical shell, and uneven spongy bone textures. Our study endeavors to create a deep learning framework that harnesses advantages of 3D deep learning and tackles the hurdles in accurately segmenting ankle and foot bones from clinical CT scans. A few-shot framework AFSegNet is proposed considering the computational cost, which comprises three 3D deep-learning networks adhering to the principles of progressing from simple to complex tasks and network structures. Specifically, a shallow network first over-segments the foreground, and along with the foreground ground truth are used to supervise a subsequent network to detect the over-segmented regions, which are overwhelmingly inter-bone gaps. The foreground and inter-bone gap probability map are then input into a network with multi-scale attentions and feature fusion, a loss function combining region-, boundary-, and topology-based terms to get the fine-level bone segmentation. AFSegNet is applied to the 16-class segmentation task utilizing 123 in-house CT scans, which only requires a GPU with 24 GB memory since the three sub-networks can be successively and individually trained. AFSegNet achieves a Dice of 0.953 and average surface distance of 0.207. The ablation study and comparison with two basic state-of-the-art networks indicates the effectiveness of the progressively distilled features, attention and feature fusion modules, and hybrid loss functions, with the mean surface distance error decreased up to 50 %.</div></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"118 \",\"pages\":\"Article 102456\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611124001332\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124001332","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
AFSegNet: few-shot 3D ankle-foot bone segmentation via hierarchical feature distillation and multi-scale attention and fusion
Accurate segmentation of ankle and foot bones from CT scans is essential for morphological analysis. Ankle and foot bone segmentation challenges due to the blurred bone boundaries, narrow inter-bone gaps, gaps in the cortical shell, and uneven spongy bone textures. Our study endeavors to create a deep learning framework that harnesses advantages of 3D deep learning and tackles the hurdles in accurately segmenting ankle and foot bones from clinical CT scans. A few-shot framework AFSegNet is proposed considering the computational cost, which comprises three 3D deep-learning networks adhering to the principles of progressing from simple to complex tasks and network structures. Specifically, a shallow network first over-segments the foreground, and along with the foreground ground truth are used to supervise a subsequent network to detect the over-segmented regions, which are overwhelmingly inter-bone gaps. The foreground and inter-bone gap probability map are then input into a network with multi-scale attentions and feature fusion, a loss function combining region-, boundary-, and topology-based terms to get the fine-level bone segmentation. AFSegNet is applied to the 16-class segmentation task utilizing 123 in-house CT scans, which only requires a GPU with 24 GB memory since the three sub-networks can be successively and individually trained. AFSegNet achieves a Dice of 0.953 and average surface distance of 0.207. The ablation study and comparison with two basic state-of-the-art networks indicates the effectiveness of the progressively distilled features, attention and feature fusion modules, and hybrid loss functions, with the mean surface distance error decreased up to 50 %.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.