Guanglin Qiu , Lindi Cai , Gan Li , Yiwei Ren , Enmeng Li , Kai Deng , Mengke Zhu , Shangning Han , Xiangming Che , Xuqi Li , Lin Fan
{"title":"Res@ZIF-90 通过扰乱线粒体平衡抑制胃癌进展","authors":"Guanglin Qiu , Lindi Cai , Gan Li , Yiwei Ren , Enmeng Li , Kai Deng , Mengke Zhu , Shangning Han , Xiangming Che , Xuqi Li , Lin Fan","doi":"10.1016/j.tranon.2024.102179","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Gastric cancer (GC) is still a serious threat to human health worldwide. As a natural compound, resveratrol has been proven to have anti-tumor activity, and the nano-delivery carrier has shown its excellent ability to retain and control drug release.</div></div><div><h3>Methods</h3><div>Res@ZIF-90 underwent synthesis via a one-pot method and subsequent characterization encompassing Dynamic Light Scattering, Scanning Electron Microscope, Transmission Electron Microscope, and UV–vis absorption spectroscope. The release of resveratrol from Res@ZIF-90 across varied pH environments were delineated employing High Performance Liquid Chromatography. The mitochondrial targeting of Res@ZIF-90 was scrutinized utilizing Fluorescent Inverted Microscopy. The cytotoxic impact of Res@ZIF-90 on HGC-27 cells was evaluated through CCK-8 assay, Live/Dead staining, scratch test, and JC-1 assay. Furthermore, the HGC-27 tumor-bearing mice model was established to explore the anti-tumor effect of Res@ZIF-90.</div></div><div><h3>Results</h3><div>ZIF-90 can effectively release resveratrol under acidic (pH = 5.5) conditions. In addition, Res@ZIF-90 could be taken up by cells and localized into mitochondria. ZIF-90 has no obvious cytotoxicity at the experimental concentration, while Res@ZIF-90 was more cytotoxic to HGC-27 cells than free resveratrol at the same concentration. Res@ZIF-90 significantly reduced the expressions of PGCS 1α, TFAM, PINK1, and COX IV, which together induced mitochondrial homeostasis disorders and inhibited the tumor growth of HGC-27 tumor-bearing mice in vivo.</div></div><div><h3>Conclusions</h3><div>Res@ZIF-90 can inhibit the progression of gastric cancer by targeting the mitochondria of gastric cancer cells and disrupting mitochondrial homeostasis to produce cytotoxic effects. Res@ZIF-90 may be a promising antitumor drug with potential application value.</div></div>","PeriodicalId":48975,"journal":{"name":"Translational Oncology","volume":"51 ","pages":"Article 102179"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Res@ZIF-90 suppress gastric cancer progression by disturbing mitochondrial homeostasis\",\"authors\":\"Guanglin Qiu , Lindi Cai , Gan Li , Yiwei Ren , Enmeng Li , Kai Deng , Mengke Zhu , Shangning Han , Xiangming Che , Xuqi Li , Lin Fan\",\"doi\":\"10.1016/j.tranon.2024.102179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Gastric cancer (GC) is still a serious threat to human health worldwide. As a natural compound, resveratrol has been proven to have anti-tumor activity, and the nano-delivery carrier has shown its excellent ability to retain and control drug release.</div></div><div><h3>Methods</h3><div>Res@ZIF-90 underwent synthesis via a one-pot method and subsequent characterization encompassing Dynamic Light Scattering, Scanning Electron Microscope, Transmission Electron Microscope, and UV–vis absorption spectroscope. The release of resveratrol from Res@ZIF-90 across varied pH environments were delineated employing High Performance Liquid Chromatography. The mitochondrial targeting of Res@ZIF-90 was scrutinized utilizing Fluorescent Inverted Microscopy. The cytotoxic impact of Res@ZIF-90 on HGC-27 cells was evaluated through CCK-8 assay, Live/Dead staining, scratch test, and JC-1 assay. Furthermore, the HGC-27 tumor-bearing mice model was established to explore the anti-tumor effect of Res@ZIF-90.</div></div><div><h3>Results</h3><div>ZIF-90 can effectively release resveratrol under acidic (pH = 5.5) conditions. In addition, Res@ZIF-90 could be taken up by cells and localized into mitochondria. ZIF-90 has no obvious cytotoxicity at the experimental concentration, while Res@ZIF-90 was more cytotoxic to HGC-27 cells than free resveratrol at the same concentration. Res@ZIF-90 significantly reduced the expressions of PGCS 1α, TFAM, PINK1, and COX IV, which together induced mitochondrial homeostasis disorders and inhibited the tumor growth of HGC-27 tumor-bearing mice in vivo.</div></div><div><h3>Conclusions</h3><div>Res@ZIF-90 can inhibit the progression of gastric cancer by targeting the mitochondria of gastric cancer cells and disrupting mitochondrial homeostasis to produce cytotoxic effects. Res@ZIF-90 may be a promising antitumor drug with potential application value.</div></div>\",\"PeriodicalId\":48975,\"journal\":{\"name\":\"Translational Oncology\",\"volume\":\"51 \",\"pages\":\"Article 102179\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S193652332400305X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S193652332400305X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Res@ZIF-90 suppress gastric cancer progression by disturbing mitochondrial homeostasis
Background
Gastric cancer (GC) is still a serious threat to human health worldwide. As a natural compound, resveratrol has been proven to have anti-tumor activity, and the nano-delivery carrier has shown its excellent ability to retain and control drug release.
Methods
Res@ZIF-90 underwent synthesis via a one-pot method and subsequent characterization encompassing Dynamic Light Scattering, Scanning Electron Microscope, Transmission Electron Microscope, and UV–vis absorption spectroscope. The release of resveratrol from Res@ZIF-90 across varied pH environments were delineated employing High Performance Liquid Chromatography. The mitochondrial targeting of Res@ZIF-90 was scrutinized utilizing Fluorescent Inverted Microscopy. The cytotoxic impact of Res@ZIF-90 on HGC-27 cells was evaluated through CCK-8 assay, Live/Dead staining, scratch test, and JC-1 assay. Furthermore, the HGC-27 tumor-bearing mice model was established to explore the anti-tumor effect of Res@ZIF-90.
Results
ZIF-90 can effectively release resveratrol under acidic (pH = 5.5) conditions. In addition, Res@ZIF-90 could be taken up by cells and localized into mitochondria. ZIF-90 has no obvious cytotoxicity at the experimental concentration, while Res@ZIF-90 was more cytotoxic to HGC-27 cells than free resveratrol at the same concentration. Res@ZIF-90 significantly reduced the expressions of PGCS 1α, TFAM, PINK1, and COX IV, which together induced mitochondrial homeostasis disorders and inhibited the tumor growth of HGC-27 tumor-bearing mice in vivo.
Conclusions
Res@ZIF-90 can inhibit the progression of gastric cancer by targeting the mitochondria of gastric cancer cells and disrupting mitochondrial homeostasis to produce cytotoxic effects. Res@ZIF-90 may be a promising antitumor drug with potential application value.
期刊介绍:
Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.