{"title":"利用域自适应和对抗网络进行旋转机械的跨域智能诊断","authors":"Kui Hu , Yiwei Cheng , Jun Wu , Haiping Zhu","doi":"10.1016/j.jii.2024.100722","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate fault diagnosis of rotating machinery is critical to avoid catastrophic accidents. However, insufficient fault data seriously limit the performance of fault diagnosis in industrial applications. In this paper, a novel domain adaptive and adversarial network (DAAN) is proposed for data-driven fault diagnosis of the rotating machinery, which consists of a deep feature extractor, a domain classifier, and a label adaptive predictor. The deep feature extractor and domain classifier are constructed to obtain domain-invariant features by domain-adversarial training. Then, in the label adaptive predictor, a domain adaptation technique is used to reduce the feature discrepancy between the source domain and the target domain, so as to establish a mapping relationship between the data feature distribution of the two domains. Furtherly, a new transfer diagnosis method is proposed by using the DAAN, which combines the data generated by experimental simulation with deep transfer learning, to realize end-to-end intelligent fault diagnosis of the in-service machinery with few unlabeled fault samples. The proposed method explores a new solution for applying laboratory data to intelligent fault diagnosis in real scenarios. Several transfer experiments are implemented to verify the effectiveness of the proposed method by using 55 roller bearings and 4 gearboxes under various scenarios. The experimental results show that the diagnostic performance of proposed method is much better than other transfer learning methods and non-transfer learning methods.</div></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"42 ","pages":"Article 100722"},"PeriodicalIF":10.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-domain intelligent diagnostics for rotating machinery using domain adaptive and adversarial networks\",\"authors\":\"Kui Hu , Yiwei Cheng , Jun Wu , Haiping Zhu\",\"doi\":\"10.1016/j.jii.2024.100722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate fault diagnosis of rotating machinery is critical to avoid catastrophic accidents. However, insufficient fault data seriously limit the performance of fault diagnosis in industrial applications. In this paper, a novel domain adaptive and adversarial network (DAAN) is proposed for data-driven fault diagnosis of the rotating machinery, which consists of a deep feature extractor, a domain classifier, and a label adaptive predictor. The deep feature extractor and domain classifier are constructed to obtain domain-invariant features by domain-adversarial training. Then, in the label adaptive predictor, a domain adaptation technique is used to reduce the feature discrepancy between the source domain and the target domain, so as to establish a mapping relationship between the data feature distribution of the two domains. Furtherly, a new transfer diagnosis method is proposed by using the DAAN, which combines the data generated by experimental simulation with deep transfer learning, to realize end-to-end intelligent fault diagnosis of the in-service machinery with few unlabeled fault samples. The proposed method explores a new solution for applying laboratory data to intelligent fault diagnosis in real scenarios. Several transfer experiments are implemented to verify the effectiveness of the proposed method by using 55 roller bearings and 4 gearboxes under various scenarios. The experimental results show that the diagnostic performance of proposed method is much better than other transfer learning methods and non-transfer learning methods.</div></div>\",\"PeriodicalId\":55975,\"journal\":{\"name\":\"Journal of Industrial Information Integration\",\"volume\":\"42 \",\"pages\":\"Article 100722\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Information Integration\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452414X24001651\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24001651","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Cross-domain intelligent diagnostics for rotating machinery using domain adaptive and adversarial networks
Accurate fault diagnosis of rotating machinery is critical to avoid catastrophic accidents. However, insufficient fault data seriously limit the performance of fault diagnosis in industrial applications. In this paper, a novel domain adaptive and adversarial network (DAAN) is proposed for data-driven fault diagnosis of the rotating machinery, which consists of a deep feature extractor, a domain classifier, and a label adaptive predictor. The deep feature extractor and domain classifier are constructed to obtain domain-invariant features by domain-adversarial training. Then, in the label adaptive predictor, a domain adaptation technique is used to reduce the feature discrepancy between the source domain and the target domain, so as to establish a mapping relationship between the data feature distribution of the two domains. Furtherly, a new transfer diagnosis method is proposed by using the DAAN, which combines the data generated by experimental simulation with deep transfer learning, to realize end-to-end intelligent fault diagnosis of the in-service machinery with few unlabeled fault samples. The proposed method explores a new solution for applying laboratory data to intelligent fault diagnosis in real scenarios. Several transfer experiments are implemented to verify the effectiveness of the proposed method by using 55 roller bearings and 4 gearboxes under various scenarios. The experimental results show that the diagnostic performance of proposed method is much better than other transfer learning methods and non-transfer learning methods.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.