某些非均质非线性偏微分方程族的形式解,第 2 部分:可求和性

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Alberto Lastra , Pascal Remy , Maria Suwińska
{"title":"某些非均质非线性偏微分方程族的形式解,第 2 部分:可求和性","authors":"Alberto Lastra ,&nbsp;Pascal Remy ,&nbsp;Maria Suwińska","doi":"10.1016/j.physd.2024.134420","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we investigate the summability of the formal power series solutions in time of a class of inhomogeneous nonlinear partial differential equations in two variables, whose corresponding Newton polygon admits a unique positive slope <span><math><mi>k</mi></math></span>, the latter being determined by the highest spatial-derivative order of the initial equation. We give in particular a necessary and sufficient condition for the <span><math><mi>k</mi></math></span>-summability of the solutions in a given direction, and we illustrate this result by some examples. This condition generalizes the ones already given by the second author in Remy (2016, 2020, 2021 [25,26], 2022, 2023). In addition, we present some technical results on the generalized binomial and multinomial coefficients, which are needed for the proof of our main result.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formal solutions of some family of inhomogeneous nonlinear partial differential equations, Part 2: Summability\",\"authors\":\"Alberto Lastra ,&nbsp;Pascal Remy ,&nbsp;Maria Suwińska\",\"doi\":\"10.1016/j.physd.2024.134420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we investigate the summability of the formal power series solutions in time of a class of inhomogeneous nonlinear partial differential equations in two variables, whose corresponding Newton polygon admits a unique positive slope <span><math><mi>k</mi></math></span>, the latter being determined by the highest spatial-derivative order of the initial equation. We give in particular a necessary and sufficient condition for the <span><math><mi>k</mi></math></span>-summability of the solutions in a given direction, and we illustrate this result by some examples. This condition generalizes the ones already given by the second author in Remy (2016, 2020, 2021 [25,26], 2022, 2023). In addition, we present some technical results on the generalized binomial and multinomial coefficients, which are needed for the proof of our main result.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924003701\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003701","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一类两变量非均质非线性偏微分方程的形式幂级数解的时间求和性,其相应的牛顿多边形具有唯一的正斜率 k,后者由初始方程的最高空间衍生阶决定。我们特别给出了在给定方向上解的 k 可求和性的必要条件和充分条件,并通过一些例子说明了这一结果。这个条件概括了第二作者在雷米(2016,2020,2021 [25,26],2022,2023)中已经给出的条件。此外,我们还介绍了广义二项式系数和多项式系数的一些技术结果,这些结果是证明我们的主要结果所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formal solutions of some family of inhomogeneous nonlinear partial differential equations, Part 2: Summability
In this article, we investigate the summability of the formal power series solutions in time of a class of inhomogeneous nonlinear partial differential equations in two variables, whose corresponding Newton polygon admits a unique positive slope k, the latter being determined by the highest spatial-derivative order of the initial equation. We give in particular a necessary and sufficient condition for the k-summability of the solutions in a given direction, and we illustrate this result by some examples. This condition generalizes the ones already given by the second author in Remy (2016, 2020, 2021 [25,26], 2022, 2023). In addition, we present some technical results on the generalized binomial and multinomial coefficients, which are needed for the proof of our main result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信