部分非局部介质中的环状/漩涡状极端波,在外部势能和增益/损耗的影响下,在两个方向上具有不同的衍射特性

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Emmanuel Yomba
{"title":"部分非局部介质中的环状/漩涡状极端波,在外部势能和增益/损耗的影响下,在两个方向上具有不同的衍射特性","authors":"Emmanuel Yomba","doi":"10.1016/j.physleta.2024.130012","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we analyze a (3+1)-dimensional partially nonlocal nonlinear Schrödinger (NLS) model, which incorporates various diffraction effects, gain or loss mechanisms, and confinement within linear and parabolic potentials. By reducing this complex model to a (2+1)-dimensional framework, we uncover analytical solutions that exhibit high-dimensional extreme wave structures with Hermite-Gaussian envelopes, illustrating the model's nonautonomous characteristics. Our investigation focuses on ring-like and vortex-like extreme waves, examining how different parameters—such as radius, Hermite parameter, gain, and thickness—affect these wave structures. Specifically, we find that, for fixed thickness, Hermite, and gain parameters, the radius influences the size of the wave structures. Conversely, with a fixed radius, Hermite, and thickness parameters, the gain parameter modifies the wave properties. The introduction of the Hermite parameter <em>p</em> increases the number of concentric layers in the ring-like extreme waves by <span><math><mi>p</mi><mo>+</mo><mn>1</mn></math></span>. Additionally, incorporating gain and loss effects enhances the model's applicability to real-world scenarios.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"528 ","pages":"Article 130012"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ring/vortex-like extreme wave in the partially nonlocal medium with different diffraction characteristics in both directions under influence of external potential and gain/loss\",\"authors\":\"Emmanuel Yomba\",\"doi\":\"10.1016/j.physleta.2024.130012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we analyze a (3+1)-dimensional partially nonlocal nonlinear Schrödinger (NLS) model, which incorporates various diffraction effects, gain or loss mechanisms, and confinement within linear and parabolic potentials. By reducing this complex model to a (2+1)-dimensional framework, we uncover analytical solutions that exhibit high-dimensional extreme wave structures with Hermite-Gaussian envelopes, illustrating the model's nonautonomous characteristics. Our investigation focuses on ring-like and vortex-like extreme waves, examining how different parameters—such as radius, Hermite parameter, gain, and thickness—affect these wave structures. Specifically, we find that, for fixed thickness, Hermite, and gain parameters, the radius influences the size of the wave structures. Conversely, with a fixed radius, Hermite, and thickness parameters, the gain parameter modifies the wave properties. The introduction of the Hermite parameter <em>p</em> increases the number of concentric layers in the ring-like extreme waves by <span><math><mi>p</mi><mo>+</mo><mn>1</mn></math></span>. Additionally, incorporating gain and loss effects enhances the model's applicability to real-world scenarios.</div></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":\"528 \",\"pages\":\"Article 130012\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375960124007060\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960124007060","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们分析了一个 (3+1) 维部分非局部非线性薛定谔(NLS)模型,该模型包含各种衍射效应、增益或损耗机制以及线性和抛物线势中的约束。通过将这一复杂模型还原为 (2+1)-dimensional 框架,我们发现了具有 Hermite-Gaussian 包络的高维极值波结构的解析解,说明了该模型的非自主特性。我们的研究重点是环状和涡状极值波,考察了不同参数(如半径、赫米特参数、增益和厚度)对这些波结构的影响。具体来说,我们发现在厚度、赫米特参数和增益参数固定的情况下,半径会影响波浪结构的大小。相反,在半径、Hermite 和厚度参数固定的情况下,增益参数会改变波的特性。引入赫米特参数 p 后,环状极波的同心层数增加了 p+1。此外,增益和损耗效应的加入增强了模型在现实世界中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ring/vortex-like extreme wave in the partially nonlocal medium with different diffraction characteristics in both directions under influence of external potential and gain/loss
In this study, we analyze a (3+1)-dimensional partially nonlocal nonlinear Schrödinger (NLS) model, which incorporates various diffraction effects, gain or loss mechanisms, and confinement within linear and parabolic potentials. By reducing this complex model to a (2+1)-dimensional framework, we uncover analytical solutions that exhibit high-dimensional extreme wave structures with Hermite-Gaussian envelopes, illustrating the model's nonautonomous characteristics. Our investigation focuses on ring-like and vortex-like extreme waves, examining how different parameters—such as radius, Hermite parameter, gain, and thickness—affect these wave structures. Specifically, we find that, for fixed thickness, Hermite, and gain parameters, the radius influences the size of the wave structures. Conversely, with a fixed radius, Hermite, and thickness parameters, the gain parameter modifies the wave properties. The introduction of the Hermite parameter p increases the number of concentric layers in the ring-like extreme waves by p+1. Additionally, incorporating gain and loss effects enhances the model's applicability to real-world scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信