Xiaoyuan Zhang , Xiaxia Man , Qi Zhang , Laiyu Zhu , Lu Chen , Chao Zhu , Xinxin Ci , Xiaowei Yu
{"title":"褪黑素通过激活Nrf2信号通路来缓解铁氧化,从而保护卵巢免受微粒物质诱发的卵巢功能障碍的影响。","authors":"Xiaoyuan Zhang , Xiaxia Man , Qi Zhang , Laiyu Zhu , Lu Chen , Chao Zhu , Xinxin Ci , Xiaowei Yu","doi":"10.1016/j.lfs.2024.123200","DOIUrl":null,"url":null,"abstract":"<div><div>Accumulating evidence suggests that exposure to ambient airborne PM2.5 increases the risk of primary ovarian insufficiency (POI). However, whether ferroptosis, a newly discovered type of cell death involved in PM2.5-induced lung injury and fibrosis, is involved in PM2.5-induced POI has not been determined. This study aimed to verify the involvement of PM2.5-induced ferroptosis in ovarian dysfunction and further demonstrate that melatonin inhibits ferroptosis by activating the Nrf2 signaling pathway to ameliorate POI in vivo and in vitro. In our study, PM2.5 promoted iron accumulation and induced lipid peroxidation, thus contributing to ferroptosis in KGN cells and ovaries. However, these effects were eliminated and enhanced in Nrf2-overexpressing and Nrf2-knockdown cells, respectively. In addition, melatonin and ferrostatin-1 (Fer-1) inhibited ferroptosis by activating the NRF2 signaling pathway, as evidenced by the silencing of Nrf2 in vivo and in vitro. Mechanistically, Nrf2-knockout mice were more susceptible to ferroptosis and PM2.5-induced POI than control mice. Moreover, melatonin suppressed changes in morphological and biochemical indicators related to ferroptosis, such as MDA and GSH depletion and GPX4 and XCT downregulation, by enhancing Nrf2 signaling. Here, we first reported that PM2.5 triggered ferroptosis by increasing ROS levels, lipid peroxidation and glutathione depletion. Notably, melatonin significantly decreased ferroptosis levels and improved ovarian function by activating the NRF2 signaling pathway in vivo and in vitro.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"359 ","pages":"Article 123200"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Melatonin protects against particulate matter-induced ovarian dysfunction by activating the Nrf2 signaling pathway to alleviate ferroptosis\",\"authors\":\"Xiaoyuan Zhang , Xiaxia Man , Qi Zhang , Laiyu Zhu , Lu Chen , Chao Zhu , Xinxin Ci , Xiaowei Yu\",\"doi\":\"10.1016/j.lfs.2024.123200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accumulating evidence suggests that exposure to ambient airborne PM2.5 increases the risk of primary ovarian insufficiency (POI). However, whether ferroptosis, a newly discovered type of cell death involved in PM2.5-induced lung injury and fibrosis, is involved in PM2.5-induced POI has not been determined. This study aimed to verify the involvement of PM2.5-induced ferroptosis in ovarian dysfunction and further demonstrate that melatonin inhibits ferroptosis by activating the Nrf2 signaling pathway to ameliorate POI in vivo and in vitro. In our study, PM2.5 promoted iron accumulation and induced lipid peroxidation, thus contributing to ferroptosis in KGN cells and ovaries. However, these effects were eliminated and enhanced in Nrf2-overexpressing and Nrf2-knockdown cells, respectively. In addition, melatonin and ferrostatin-1 (Fer-1) inhibited ferroptosis by activating the NRF2 signaling pathway, as evidenced by the silencing of Nrf2 in vivo and in vitro. Mechanistically, Nrf2-knockout mice were more susceptible to ferroptosis and PM2.5-induced POI than control mice. Moreover, melatonin suppressed changes in morphological and biochemical indicators related to ferroptosis, such as MDA and GSH depletion and GPX4 and XCT downregulation, by enhancing Nrf2 signaling. Here, we first reported that PM2.5 triggered ferroptosis by increasing ROS levels, lipid peroxidation and glutathione depletion. Notably, melatonin significantly decreased ferroptosis levels and improved ovarian function by activating the NRF2 signaling pathway in vivo and in vitro.</div></div>\",\"PeriodicalId\":18122,\"journal\":{\"name\":\"Life sciences\",\"volume\":\"359 \",\"pages\":\"Article 123200\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024320524007902\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320524007902","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Melatonin protects against particulate matter-induced ovarian dysfunction by activating the Nrf2 signaling pathway to alleviate ferroptosis
Accumulating evidence suggests that exposure to ambient airborne PM2.5 increases the risk of primary ovarian insufficiency (POI). However, whether ferroptosis, a newly discovered type of cell death involved in PM2.5-induced lung injury and fibrosis, is involved in PM2.5-induced POI has not been determined. This study aimed to verify the involvement of PM2.5-induced ferroptosis in ovarian dysfunction and further demonstrate that melatonin inhibits ferroptosis by activating the Nrf2 signaling pathway to ameliorate POI in vivo and in vitro. In our study, PM2.5 promoted iron accumulation and induced lipid peroxidation, thus contributing to ferroptosis in KGN cells and ovaries. However, these effects were eliminated and enhanced in Nrf2-overexpressing and Nrf2-knockdown cells, respectively. In addition, melatonin and ferrostatin-1 (Fer-1) inhibited ferroptosis by activating the NRF2 signaling pathway, as evidenced by the silencing of Nrf2 in vivo and in vitro. Mechanistically, Nrf2-knockout mice were more susceptible to ferroptosis and PM2.5-induced POI than control mice. Moreover, melatonin suppressed changes in morphological and biochemical indicators related to ferroptosis, such as MDA and GSH depletion and GPX4 and XCT downregulation, by enhancing Nrf2 signaling. Here, we first reported that PM2.5 triggered ferroptosis by increasing ROS levels, lipid peroxidation and glutathione depletion. Notably, melatonin significantly decreased ferroptosis levels and improved ovarian function by activating the NRF2 signaling pathway in vivo and in vitro.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.