通过定量多重切心非手性-手性二维液相色谱-质谱联用仪推断草脂素的形成途径。

IF 5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nadja Kampschulte, Rebecca Kirchhoff, Ariane Löwen, Nils Helge Schebb
{"title":"通过定量多重切心非手性-手性二维液相色谱-质谱联用仪推断草脂素的形成途径。","authors":"Nadja Kampschulte, Rebecca Kirchhoff, Ariane Löwen, Nils Helge Schebb","doi":"10.1016/j.jlr.2024.100694","DOIUrl":null,"url":null,"abstract":"<p><p>Several oxylipins are regulators of inflammation. They are formed by enzymes such as lipoxygenases or cyclooxygenases, but also stereorandomly by autoxidation. Reversed-phase liquid chromatography-tandem-mass-spectrometry (LC-MS/MS) methods for oxylipin quantification do not separate enantiomers. Here, we combine sensitive and selective oxylipin analysis with chiral separation using two-dimensional (2D)-LC-MS/MS. By multiple heart-cutting, the oxylipin peaks are transferred onto a chiral column. 45 enantiomeric pairs of (di-)hydroxy-fatty acids are separated with full gradient elution within 1.80min, yielding lower limits of quantification <1pg on column. Concentrations as well as enantiomeric fractions of oxylipins can be determined, even at low concentrations or at high enantiomeric excess of one isomer. The developed achiral-chiral multiple heart-cutting 2D-LC-MS/MS method offers unprecedented selectivity, enabling a better understanding of the formation route of these lipid mediators. This is demonstrated by distinguishing the formation of hydroxy-fatty acids by (acetylated) cyclooxygenase-2 and radical-mediated autoxidation. Applying the method to human M2-like-macrophages, we show that the so-called specialized pro-resolving mediators (SPM) 5,15-DiHEPE and 7,17-DiHDHA as well as 5,15-DiHETE were present as (S,S)-enantiomers, supporting their enzymatic formation. In contrast, at least eight isomers (including protectin DX but not neutroprotectin D1) of 10,17-DiHDHA are present in immune cells, indicating formation by autoxidation. In human plasma of healthy subjects, none of these dihydroxy-fatty acids are not present. However, we demonstrate that all four isomers quickly form via autoxidation if the samples are stored improperly. Thus, dihydroxy-FA should only be reported as SPM, such as resolvin D5 or resolvin E4, if an enantioselective analysis has been carried out.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100694"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deducing formation routes of oxylipins by quantitative multiple heart-cutting achiral-chiral 2D-LC-MS.\",\"authors\":\"Nadja Kampschulte, Rebecca Kirchhoff, Ariane Löwen, Nils Helge Schebb\",\"doi\":\"10.1016/j.jlr.2024.100694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several oxylipins are regulators of inflammation. They are formed by enzymes such as lipoxygenases or cyclooxygenases, but also stereorandomly by autoxidation. Reversed-phase liquid chromatography-tandem-mass-spectrometry (LC-MS/MS) methods for oxylipin quantification do not separate enantiomers. Here, we combine sensitive and selective oxylipin analysis with chiral separation using two-dimensional (2D)-LC-MS/MS. By multiple heart-cutting, the oxylipin peaks are transferred onto a chiral column. 45 enantiomeric pairs of (di-)hydroxy-fatty acids are separated with full gradient elution within 1.80min, yielding lower limits of quantification <1pg on column. Concentrations as well as enantiomeric fractions of oxylipins can be determined, even at low concentrations or at high enantiomeric excess of one isomer. The developed achiral-chiral multiple heart-cutting 2D-LC-MS/MS method offers unprecedented selectivity, enabling a better understanding of the formation route of these lipid mediators. This is demonstrated by distinguishing the formation of hydroxy-fatty acids by (acetylated) cyclooxygenase-2 and radical-mediated autoxidation. Applying the method to human M2-like-macrophages, we show that the so-called specialized pro-resolving mediators (SPM) 5,15-DiHEPE and 7,17-DiHDHA as well as 5,15-DiHETE were present as (S,S)-enantiomers, supporting their enzymatic formation. In contrast, at least eight isomers (including protectin DX but not neutroprotectin D1) of 10,17-DiHDHA are present in immune cells, indicating formation by autoxidation. In human plasma of healthy subjects, none of these dihydroxy-fatty acids are not present. However, we demonstrate that all four isomers quickly form via autoxidation if the samples are stored improperly. Thus, dihydroxy-FA should only be reported as SPM, such as resolvin D5 or resolvin E4, if an enantioselective analysis has been carried out.</p>\",\"PeriodicalId\":16209,\"journal\":{\"name\":\"Journal of Lipid Research\",\"volume\":\" \",\"pages\":\"100694\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Lipid Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jlr.2024.100694\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2024.100694","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

有几种氧化脂是炎症的调节剂。它们是由脂氧合酶或环氧合酶等酶形成的,也可通过自氧化作用立体随机形成。反相液相色谱-串联质谱(LC-MS/MS)方法不能分离对映体,因此无法定量氧化脂素。在这里,我们利用二维 (2D)-LC-MS/MS 将灵敏、选择性的草木脂素分析与手性分离相结合。通过多次切心,草脂素峰被转移到手性色谱柱上。45 对(二)羟基脂肪酸对映体在 1.80 分钟内通过全梯度洗脱分离,得到定量下限
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deducing formation routes of oxylipins by quantitative multiple heart-cutting achiral-chiral 2D-LC-MS.

Several oxylipins are regulators of inflammation. They are formed by enzymes such as lipoxygenases or cyclooxygenases, but also stereorandomly by autoxidation. Reversed-phase liquid chromatography-tandem-mass-spectrometry (LC-MS/MS) methods for oxylipin quantification do not separate enantiomers. Here, we combine sensitive and selective oxylipin analysis with chiral separation using two-dimensional (2D)-LC-MS/MS. By multiple heart-cutting, the oxylipin peaks are transferred onto a chiral column. 45 enantiomeric pairs of (di-)hydroxy-fatty acids are separated with full gradient elution within 1.80min, yielding lower limits of quantification <1pg on column. Concentrations as well as enantiomeric fractions of oxylipins can be determined, even at low concentrations or at high enantiomeric excess of one isomer. The developed achiral-chiral multiple heart-cutting 2D-LC-MS/MS method offers unprecedented selectivity, enabling a better understanding of the formation route of these lipid mediators. This is demonstrated by distinguishing the formation of hydroxy-fatty acids by (acetylated) cyclooxygenase-2 and radical-mediated autoxidation. Applying the method to human M2-like-macrophages, we show that the so-called specialized pro-resolving mediators (SPM) 5,15-DiHEPE and 7,17-DiHDHA as well as 5,15-DiHETE were present as (S,S)-enantiomers, supporting their enzymatic formation. In contrast, at least eight isomers (including protectin DX but not neutroprotectin D1) of 10,17-DiHDHA are present in immune cells, indicating formation by autoxidation. In human plasma of healthy subjects, none of these dihydroxy-fatty acids are not present. However, we demonstrate that all four isomers quickly form via autoxidation if the samples are stored improperly. Thus, dihydroxy-FA should only be reported as SPM, such as resolvin D5 or resolvin E4, if an enantioselective analysis has been carried out.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Lipid Research
Journal of Lipid Research 生物-生化与分子生物学
CiteScore
11.10
自引率
4.60%
发文量
146
审稿时长
41 days
期刊介绍: The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信