Andrea Lomoschitz , Julia Meyer , Tanit Guitart , Miroslav Krepl , Karine Lapouge , Clara Hayn , Kristian Schweimer , Bernd Simon , Jiří Šponer , Fátima Gebauer , Janosch Hennig
{"title":"果蝇 RNA 结合蛋白 Hrp48 与 msl-2 mRNA 3' UTR 的特定 RNA 序列结合,从而调节翻译。","authors":"Andrea Lomoschitz , Julia Meyer , Tanit Guitart , Miroslav Krepl , Karine Lapouge , Clara Hayn , Kristian Schweimer , Bernd Simon , Jiří Šponer , Fátima Gebauer , Janosch Hennig","doi":"10.1016/j.bpc.2024.107346","DOIUrl":null,"url":null,"abstract":"<div><div>Repression of <em>msl-2</em> mRNA translation is essential for viability of <em>Drosophila melanogaster</em> females to prevent hypertranscription of both X chromosomes. This translational control event is coordinated by the female-specific protein Sex-lethal (Sxl) which recruits the RNA binding proteins Unr and Hrp48 to the 3’ untranslated region (UTR) of the <em>msl-2</em> transcript and represses translation initiation. The mechanism exerted by Hrp48 during translation repression and its interaction with <em>msl-2</em> are not well understood. Here we investigate the RNA binding specificity and affinity of the tandem RNA recognition motifs of Hrp48. Using NMR spectroscopy, molecular dynamics simulations and isothermal titration calorimetry, we identified the exact region of <em>msl-2</em> 3’ UTR recognized by Hrp48. Additional biophysical experiments and translation assays give further insights into complex formation of Hrp48, Unr, Sxl and RNA. Our results show that Hrp48 binds independent of Sxl and Unr downstream of the E and F binding sites of Sxl and Unr to <em>msl-2</em>.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"316 ","pages":"Article 107346"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Drosophila RNA binding protein Hrp48 binds a specific RNA sequence of the msl-2 mRNA 3’ UTR to regulate translation\",\"authors\":\"Andrea Lomoschitz , Julia Meyer , Tanit Guitart , Miroslav Krepl , Karine Lapouge , Clara Hayn , Kristian Schweimer , Bernd Simon , Jiří Šponer , Fátima Gebauer , Janosch Hennig\",\"doi\":\"10.1016/j.bpc.2024.107346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Repression of <em>msl-2</em> mRNA translation is essential for viability of <em>Drosophila melanogaster</em> females to prevent hypertranscription of both X chromosomes. This translational control event is coordinated by the female-specific protein Sex-lethal (Sxl) which recruits the RNA binding proteins Unr and Hrp48 to the 3’ untranslated region (UTR) of the <em>msl-2</em> transcript and represses translation initiation. The mechanism exerted by Hrp48 during translation repression and its interaction with <em>msl-2</em> are not well understood. Here we investigate the RNA binding specificity and affinity of the tandem RNA recognition motifs of Hrp48. Using NMR spectroscopy, molecular dynamics simulations and isothermal titration calorimetry, we identified the exact region of <em>msl-2</em> 3’ UTR recognized by Hrp48. Additional biophysical experiments and translation assays give further insights into complex formation of Hrp48, Unr, Sxl and RNA. Our results show that Hrp48 binds independent of Sxl and Unr downstream of the E and F binding sites of Sxl and Unr to <em>msl-2</em>.</div></div>\",\"PeriodicalId\":8979,\"journal\":{\"name\":\"Biophysical chemistry\",\"volume\":\"316 \",\"pages\":\"Article 107346\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301462224001753\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224001753","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Drosophila RNA binding protein Hrp48 binds a specific RNA sequence of the msl-2 mRNA 3’ UTR to regulate translation
Repression of msl-2 mRNA translation is essential for viability of Drosophila melanogaster females to prevent hypertranscription of both X chromosomes. This translational control event is coordinated by the female-specific protein Sex-lethal (Sxl) which recruits the RNA binding proteins Unr and Hrp48 to the 3’ untranslated region (UTR) of the msl-2 transcript and represses translation initiation. The mechanism exerted by Hrp48 during translation repression and its interaction with msl-2 are not well understood. Here we investigate the RNA binding specificity and affinity of the tandem RNA recognition motifs of Hrp48. Using NMR spectroscopy, molecular dynamics simulations and isothermal titration calorimetry, we identified the exact region of msl-2 3’ UTR recognized by Hrp48. Additional biophysical experiments and translation assays give further insights into complex formation of Hrp48, Unr, Sxl and RNA. Our results show that Hrp48 binds independent of Sxl and Unr downstream of the E and F binding sites of Sxl and Unr to msl-2.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.