{"title":"基于骨干意识和不变点注意力的抗体-抗原相互作用预测。","authors":"Miao Gu, Weiyang Yang, Min Liu","doi":"10.1186/s12859-024-05961-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Antibodies play a crucial role in disease treatment, leveraging their ability to selectively interact with the specific antigen. However, screening antibody gene sequences for target antigens via biological experiments is extremely time-consuming and labor-intensive. Several computational methods have been developed to predict antibody-antigen interaction while suffering from the lack of characterizing the underlying structure of the antibody.</p><p><strong>Results: </strong>Beneficial from the recent breakthroughs in deep learning for antibody structure prediction, we propose a novel neural network architecture to predict antibody-antigen interaction. We first introduce AbAgIPA: an antibody structure prediction network to obtain the antibody backbone structure, where the structural features of antibodies and antigens are encoded into representation vectors according to the amino acid physicochemical features and Invariant Point Attention (IPA) computation methods. Finally, the antibody-antigen interaction is predicted by global max pooling, feature concatenation, and a fully connected layer. We evaluated our method on antigen diversity and antigen-specific antibody-antigen interaction datasets. Additionally, our model exhibits a commendable level of interpretability, essential for understanding underlying interaction mechanisms.</p><p><strong>Conclusions: </strong>Quantitative experimental results demonstrate that the new neural network architecture significantly outperforms the best sequence-based methods as well as the methods based on residue contact maps and graph convolution networks (GCNs). The source code is freely available on GitHub at https://github.com/gmthu66/AbAgIPA .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"348"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542381/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prediction of antibody-antigen interaction based on backbone aware with invariant point attention.\",\"authors\":\"Miao Gu, Weiyang Yang, Min Liu\",\"doi\":\"10.1186/s12859-024-05961-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Antibodies play a crucial role in disease treatment, leveraging their ability to selectively interact with the specific antigen. However, screening antibody gene sequences for target antigens via biological experiments is extremely time-consuming and labor-intensive. Several computational methods have been developed to predict antibody-antigen interaction while suffering from the lack of characterizing the underlying structure of the antibody.</p><p><strong>Results: </strong>Beneficial from the recent breakthroughs in deep learning for antibody structure prediction, we propose a novel neural network architecture to predict antibody-antigen interaction. We first introduce AbAgIPA: an antibody structure prediction network to obtain the antibody backbone structure, where the structural features of antibodies and antigens are encoded into representation vectors according to the amino acid physicochemical features and Invariant Point Attention (IPA) computation methods. Finally, the antibody-antigen interaction is predicted by global max pooling, feature concatenation, and a fully connected layer. We evaluated our method on antigen diversity and antigen-specific antibody-antigen interaction datasets. Additionally, our model exhibits a commendable level of interpretability, essential for understanding underlying interaction mechanisms.</p><p><strong>Conclusions: </strong>Quantitative experimental results demonstrate that the new neural network architecture significantly outperforms the best sequence-based methods as well as the methods based on residue contact maps and graph convolution networks (GCNs). The source code is freely available on GitHub at https://github.com/gmthu66/AbAgIPA .</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"25 1\",\"pages\":\"348\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542381/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-05961-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05961-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Prediction of antibody-antigen interaction based on backbone aware with invariant point attention.
Background: Antibodies play a crucial role in disease treatment, leveraging their ability to selectively interact with the specific antigen. However, screening antibody gene sequences for target antigens via biological experiments is extremely time-consuming and labor-intensive. Several computational methods have been developed to predict antibody-antigen interaction while suffering from the lack of characterizing the underlying structure of the antibody.
Results: Beneficial from the recent breakthroughs in deep learning for antibody structure prediction, we propose a novel neural network architecture to predict antibody-antigen interaction. We first introduce AbAgIPA: an antibody structure prediction network to obtain the antibody backbone structure, where the structural features of antibodies and antigens are encoded into representation vectors according to the amino acid physicochemical features and Invariant Point Attention (IPA) computation methods. Finally, the antibody-antigen interaction is predicted by global max pooling, feature concatenation, and a fully connected layer. We evaluated our method on antigen diversity and antigen-specific antibody-antigen interaction datasets. Additionally, our model exhibits a commendable level of interpretability, essential for understanding underlying interaction mechanisms.
Conclusions: Quantitative experimental results demonstrate that the new neural network architecture significantly outperforms the best sequence-based methods as well as the methods based on residue contact maps and graph convolution networks (GCNs). The source code is freely available on GitHub at https://github.com/gmthu66/AbAgIPA .
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.