单个朗道水平内的超晶格诱导电子渗流

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Nilanjan Roy, Bo Peng, Bo Yang
{"title":"单个朗道水平内的超晶格诱导电子渗流","authors":"Nilanjan Roy, Bo Peng, Bo Yang","doi":"10.1103/physrevb.110.195116","DOIUrl":null,"url":null,"abstract":"We investigate the quantum Hall effect in a single Landau level in the presence of a square superlattice of <mjx-container ctxtmenu_counter=\"34\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"delta\" data-semantic-type=\"identifier\"><mjx-c>𝛿</mjx-c></mjx-mi></mjx-math></mjx-container>-function potentials. The interplay between the superlattice spacing <mjx-container ctxtmenu_counter=\"35\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"a Subscript s\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑎</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> and the magnetic length <mjx-container ctxtmenu_counter=\"36\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"script l Subscript upper B\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℓ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> in a clean system leads to three interesting characteristic regimes corresponding to <mjx-container ctxtmenu_counter=\"37\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-children=\"7,8,19\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"7 8 19\" data-semantic-role=\"sequence\" data-semantic-speech=\"a Subscript s Baseline less than script l Subscript upper B Baseline comma a Subscript s Baseline much greater than script l Subscript upper B Baseline\" data-semantic-structure=\"(20 (7 (2 0 1) 3 (6 4 5)) 8 (19 9 (17 (12 10 11) 13 (16 14 15))))\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-children=\"2,6\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 6\" data-semantic-parent=\"20\" data-semantic-role=\"inequality\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑎</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"relseq,&lt;\" data-semantic-parent=\"7\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>&lt;</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\" space=\"4\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℓ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"20\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\"><mjx-c>,</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"9,17\" data-semantic-collapsed=\"(19 (c 18) 9 17)\" data-semantic- data-semantic-owns=\"9 17\" data-semantic-parent=\"20\" data-semantic-role=\"text\" data-semantic-type=\"punctuated\" space=\"2\"><mjx-mo data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"19\" data-semantic-role=\"space\" data-semantic-type=\"text\"><mjx-c> </mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"12,16\" data-semantic-content=\"13\" data-semantic- data-semantic-owns=\"12 13 16\" data-semantic-parent=\"19\" data-semantic-role=\"inequality\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"10,11\" data-semantic- data-semantic-owns=\"10 11\" data-semantic-parent=\"17\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑎</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"relseq,≫\" data-semantic-parent=\"17\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>≫</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"14,15\" data-semantic- data-semantic-owns=\"14 15\" data-semantic-parent=\"17\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\" space=\"4\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℓ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-mrow></mjx-math></mjx-container>, and the intermediate one where <mjx-container ctxtmenu_counter=\"38\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(7 (2 0 1) 3 (6 4 5))\"><mjx-mrow data-semantic-children=\"2,6\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 6\" data-semantic-role=\"equality\" data-semantic-speech=\"a Subscript s Baseline tilde script l Subscript upper B\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑎</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"relseq,∼\" data-semantic-parent=\"7\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>∼</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\" space=\"4\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℓ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container>. In the intermediate regime, the continuous magnetic translation symmetry breaks down to discrete lattice symmetry. In contrast, we show that, in the other two regimes, the same is hardly broken in the topological band despite the presence of the superlattice. In the presence of weak disorder (white-noise) one typically expects a tiny fraction of extended states due to topological protection of the Landau level. Interestingly, we obtain a large fraction of extended states throughout the intermediate regime which maximizes at the special point <mjx-container ctxtmenu_counter=\"39\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(14 (2 0 1) 3 (13 (8 (7 4 6 5)) 12 (11 9 10)))\"><mjx-mrow data-semantic-children=\"2,13\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 13\" data-semantic-role=\"equality\" data-semantic-speech=\"a Subscript s Baseline equals StartRoot 2 pi EndRoot script l Subscript upper B\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑎</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"14\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"8,11\" data-semantic-content=\"12\" data-semantic- data-semantic-owns=\"8 12 11\" data-semantic-parent=\"14\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"4\"><mjx-msqrt data-semantic-children=\"7\" data-semantic- data-semantic-owns=\"7\" data-semantic-parent=\"13\" data-semantic-role=\"unknown\" data-semantic-type=\"sqrt\"><mjx-sqrt><mjx-surd><mjx-mo><mjx-c>√</mjx-c></mjx-mo></mjx-surd><mjx-box style=\"padding-top: 0.275em; border-top-width: 0.085em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"4,5\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"4 6 5\" data-semantic-parent=\"8\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜋</mjx-c></mjx-mi></mjx-mrow></mjx-box></mjx-sqrt></mjx-msqrt><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"13\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"9,10\" data-semantic- data-semantic-owns=\"9 10\" data-semantic-parent=\"13\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℓ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-mrow></mjx-math></mjx-container>. We argue the superlattice induced percolation phenomenon requires both the breaking of the time reversal symmetry and the continuous magnetic translational symmetry. It could have a direct implication on the integer plateau transitions in both continuous quantum Hall systems and the lattice based anomalous quantum Hall effect.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superlattice-induced electron percolation within a single Landau level\",\"authors\":\"Nilanjan Roy, Bo Peng, Bo Yang\",\"doi\":\"10.1103/physrevb.110.195116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the quantum Hall effect in a single Landau level in the presence of a square superlattice of <mjx-container ctxtmenu_counter=\\\"34\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"delta\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝛿</mjx-c></mjx-mi></mjx-math></mjx-container>-function potentials. The interplay between the superlattice spacing <mjx-container ctxtmenu_counter=\\\"35\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(2 0 1)\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"a Subscript s\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑎</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> and the magnetic length <mjx-container ctxtmenu_counter=\\\"36\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(2 0 1)\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"script l Subscript upper B\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℓ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> in a clean system leads to three interesting characteristic regimes corresponding to <mjx-container ctxtmenu_counter=\\\"37\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-children=\\\"7,8,19\\\" data-semantic-content=\\\"8\\\" data-semantic- data-semantic-owns=\\\"7 8 19\\\" data-semantic-role=\\\"sequence\\\" data-semantic-speech=\\\"a Subscript s Baseline less than script l Subscript upper B Baseline comma a Subscript s Baseline much greater than script l Subscript upper B Baseline\\\" data-semantic-structure=\\\"(20 (7 (2 0 1) 3 (6 4 5)) 8 (19 9 (17 (12 10 11) 13 (16 14 15))))\\\" data-semantic-type=\\\"punctuated\\\"><mjx-mrow data-semantic-children=\\\"2,6\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-owns=\\\"2 3 6\\\" data-semantic-parent=\\\"20\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relseq\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑎</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,&lt;\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\" space=\\\"4\\\"><mjx-c>&lt;</mjx-c></mjx-mo><mjx-msub data-semantic-children=\\\"4,5\\\" data-semantic- data-semantic-owns=\\\"4 5\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\" space=\\\"4\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℓ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"20\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c>,</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"9,17\\\" data-semantic-collapsed=\\\"(19 (c 18) 9 17)\\\" data-semantic- data-semantic-owns=\\\"9 17\\\" data-semantic-parent=\\\"20\\\" data-semantic-role=\\\"text\\\" data-semantic-type=\\\"punctuated\\\" space=\\\"2\\\"><mjx-mo data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic- data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"text\\\"><mjx-c> </mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"12,16\\\" data-semantic-content=\\\"13\\\" data-semantic- data-semantic-owns=\\\"12 13 16\\\" data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relseq\\\"><mjx-msub data-semantic-children=\\\"10,11\\\" data-semantic- data-semantic-owns=\\\"10 11\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑎</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,≫\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\" space=\\\"4\\\"><mjx-c>≫</mjx-c></mjx-mo><mjx-msub data-semantic-children=\\\"14,15\\\" data-semantic- data-semantic-owns=\\\"14 15\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\" space=\\\"4\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℓ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-mrow></mjx-math></mjx-container>, and the intermediate one where <mjx-container ctxtmenu_counter=\\\"38\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(7 (2 0 1) 3 (6 4 5))\\\"><mjx-mrow data-semantic-children=\\\"2,6\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-owns=\\\"2 3 6\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"a Subscript s Baseline tilde script l Subscript upper B\\\" data-semantic-type=\\\"relseq\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑎</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,∼\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" space=\\\"4\\\"><mjx-c>∼</mjx-c></mjx-mo><mjx-msub data-semantic-children=\\\"4,5\\\" data-semantic- data-semantic-owns=\\\"4 5\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\" space=\\\"4\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℓ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container>. In the intermediate regime, the continuous magnetic translation symmetry breaks down to discrete lattice symmetry. In contrast, we show that, in the other two regimes, the same is hardly broken in the topological band despite the presence of the superlattice. In the presence of weak disorder (white-noise) one typically expects a tiny fraction of extended states due to topological protection of the Landau level. Interestingly, we obtain a large fraction of extended states throughout the intermediate regime which maximizes at the special point <mjx-container ctxtmenu_counter=\\\"39\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(14 (2 0 1) 3 (13 (8 (7 4 6 5)) 12 (11 9 10)))\\\"><mjx-mrow data-semantic-children=\\\"2,13\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-owns=\\\"2 3 13\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"a Subscript s Baseline equals StartRoot 2 pi EndRoot script l Subscript upper B\\\" data-semantic-type=\\\"relseq\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑎</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" space=\\\"4\\\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"8,11\\\" data-semantic-content=\\\"12\\\" data-semantic- data-semantic-owns=\\\"8 12 11\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\" space=\\\"4\\\"><mjx-msqrt data-semantic-children=\\\"7\\\" data-semantic- data-semantic-owns=\\\"7\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"sqrt\\\"><mjx-sqrt><mjx-surd><mjx-mo><mjx-c>√</mjx-c></mjx-mo></mjx-surd><mjx-box style=\\\"padding-top: 0.275em; border-top-width: 0.085em;\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"4,5\\\" data-semantic-content=\\\"6\\\" data-semantic- data-semantic-owns=\\\"4 6 5\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝜋</mjx-c></mjx-mi></mjx-mrow></mjx-box></mjx-sqrt></mjx-msqrt><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children=\\\"9,10\\\" data-semantic- data-semantic-owns=\\\"9 10\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℓ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-mrow></mjx-math></mjx-container>. We argue the superlattice induced percolation phenomenon requires both the breaking of the time reversal symmetry and the continuous magnetic translational symmetry. It could have a direct implication on the integer plateau transitions in both continuous quantum Hall systems and the lattice based anomalous quantum Hall effect.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.195116\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.195116","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在𝛿函数势的方形超晶格存在下,单一朗道水平的量子霍尔效应。在一个纯净的系统中,超晶格间距 𝑎𝑠 和磁长 ℓ𝐵之间的相互作用导致了三种有趣的特征状态,分别对应于 𝑎𝑠<;𝑎𝑠≫ℓ𝐵、𝑎𝑠≫ℓ𝐵和中间𝑎∼𝑠ℓ𝐵。在中间体系中,连续磁平移对称性分解为离散晶格对称性。与此相反,我们的研究表明,在其他两种情况下,尽管存在超晶格,但拓扑带中的对称性几乎没有被打破。在存在弱无序(白噪声)的情况下,由于朗道水平的拓扑保护,人们通常会期待极小部分的扩展态。有趣的是,我们在整个中间体系中获得了很大一部分扩展态,在特殊点𝑎𝑠=√2𝜋ℓ𝐵达到最大。我们认为,超晶格诱导的渗滤现象需要同时打破时间反转对称性和连续磁平移对称性。它可能直接影响连续量子霍尔系统和基于晶格的反常量子霍尔效应中的整数高原跃迁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superlattice-induced electron percolation within a single Landau level
We investigate the quantum Hall effect in a single Landau level in the presence of a square superlattice of 𝛿-function potentials. The interplay between the superlattice spacing 𝑎𝑠 and the magnetic length 𝐵 in a clean system leads to three interesting characteristic regimes corresponding to 𝑎𝑠<𝐵, 𝑎𝑠𝐵, and the intermediate one where 𝑎𝑠𝐵. In the intermediate regime, the continuous magnetic translation symmetry breaks down to discrete lattice symmetry. In contrast, we show that, in the other two regimes, the same is hardly broken in the topological band despite the presence of the superlattice. In the presence of weak disorder (white-noise) one typically expects a tiny fraction of extended states due to topological protection of the Landau level. Interestingly, we obtain a large fraction of extended states throughout the intermediate regime which maximizes at the special point 𝑎𝑠=2𝜋𝐵. We argue the superlattice induced percolation phenomenon requires both the breaking of the time reversal symmetry and the continuous magnetic translational symmetry. It could have a direct implication on the integer plateau transitions in both continuous quantum Hall systems and the lattice based anomalous quantum Hall effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信