求助PDF
{"title":"双层堆积𝐴型变磁体:产生二维变磁性的一般方法","authors":"Sike Zeng, Yu-Jun Zhao","doi":"10.1103/physrevb.110.174410","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a concept of bilayer stacking <mjx-container ctxtmenu_counter=\"32\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnet (BSAA), in which two identical ferromagnetic monolayers are stacked with antiferromagnetic coupling to form a two-dimensional (2D) <mjx-container ctxtmenu_counter=\"33\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnet. By solving the stacking model, we derive all BSAAs for all layer groups and draw three key conclusions: (i) Only 17 layer groups can realize intrinsic <mjx-container ctxtmenu_counter=\"34\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnetism. All 2D <mjx-container ctxtmenu_counter=\"35\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnets must belong to these 17 layer groups, which will be helpful to search for 2D <mjx-container ctxtmenu_counter=\"36\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnet. (ii) It is impossible to connect the two sublattices of BSAA using <mjx-container ctxtmenu_counter=\"37\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 (4 1 3 2))\"><mjx-msub data-semantic-children=\"0,4\" data-semantic- data-semantic-owns=\"0 4\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S Subscript 3 z\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.005em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"1,2\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"1 3 2\" data-semantic-parent=\"5\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"4\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑧</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container> or <mjx-container ctxtmenu_counter=\"38\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 (4 1 3 2))\"><mjx-msub data-semantic-children=\"0,4\" data-semantic- data-semantic-owns=\"0 4\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S Subscript 6 z\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.005em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"1,2\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"1 3 2\" data-semantic-parent=\"5\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>6</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"4\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑧</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container>, a constraint that is also applicable to all 2D altermagnets. (iii) <mjx-container ctxtmenu_counter=\"39\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 (4 1 3 2))\"><mjx-msub data-semantic-children=\"0,4\" data-semantic- data-semantic-owns=\"0 4\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper C Subscript 2 alpha\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐶</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.018em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"1,2\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"1 3 2\" data-semantic-parent=\"5\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"4\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝛼</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container> is a general stacking operation to generate BSAA for an arbitrary monolayer. Our theory not only can explain the previously reported twisted-bilayer altermagnets, but also can provide more possibilities to generate <mjx-container ctxtmenu_counter=\"40\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnets. Our research has significantly broadened the range of candidate materials for 2D altermagnets. Based on conclusion (i), the bilayer <mjx-container ctxtmenu_counter=\"41\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper N i upper Z r upper C l 6\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">N</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">i</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">Z</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">r</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">C</mjx-c><mjx-c style=\"padding-top: 0.706em;\">l</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>6</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> is predicted to exhibit intrinsic <mjx-container ctxtmenu_counter=\"42\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnetism. Additionally, we use twisted-bilayer <mjx-container ctxtmenu_counter=\"43\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper N i upper C l 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">N</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">i</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">C</mjx-c><mjx-c style=\"padding-top: 0.706em;\">l</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> and CrOCl as supplementary examples of BSAA. Furthermore, utilizing symmetry analysis and first-principles calculation, we scrutinize their spin-momentum locking characteristic to substantiate their altermagnetic properties.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"29 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilayer stacking𝐴-type altermagnet: A general approach to generating two-dimensional altermagnetism\",\"authors\":\"Sike Zeng, Yu-Jun Zhao\",\"doi\":\"10.1103/physrevb.110.174410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a concept of bilayer stacking <mjx-container ctxtmenu_counter=\\\"32\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper A\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnet (BSAA), in which two identical ferromagnetic monolayers are stacked with antiferromagnetic coupling to form a two-dimensional (2D) <mjx-container ctxtmenu_counter=\\\"33\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper A\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnet. By solving the stacking model, we derive all BSAAs for all layer groups and draw three key conclusions: (i) Only 17 layer groups can realize intrinsic <mjx-container ctxtmenu_counter=\\\"34\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper A\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnetism. All 2D <mjx-container ctxtmenu_counter=\\\"35\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper A\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnets must belong to these 17 layer groups, which will be helpful to search for 2D <mjx-container ctxtmenu_counter=\\\"36\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper A\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnet. (ii) It is impossible to connect the two sublattices of BSAA using <mjx-container ctxtmenu_counter=\\\"37\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(5 0 (4 1 3 2))\\\"><mjx-msub data-semantic-children=\\\"0,4\\\" data-semantic- data-semantic-owns=\\\"0 4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper S Subscript 3 z\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em; margin-left: -0.005em;\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"1,2\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-owns=\\\"1 3 2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\" size=\\\"s\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑧</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container> or <mjx-container ctxtmenu_counter=\\\"38\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(5 0 (4 1 3 2))\\\"><mjx-msub data-semantic-children=\\\"0,4\\\" data-semantic- data-semantic-owns=\\\"0 4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper S Subscript 6 z\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em; margin-left: -0.005em;\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"1,2\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-owns=\\\"1 3 2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\" size=\\\"s\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>6</mjx-c></mjx-mn><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑧</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container>, a constraint that is also applicable to all 2D altermagnets. (iii) <mjx-container ctxtmenu_counter=\\\"39\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(5 0 (4 1 3 2))\\\"><mjx-msub data-semantic-children=\\\"0,4\\\" data-semantic- data-semantic-owns=\\\"0 4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper C Subscript 2 alpha\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐶</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em; margin-left: -0.018em;\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"1,2\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-owns=\\\"1 3 2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\" size=\\\"s\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝛼</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container> is a general stacking operation to generate BSAA for an arbitrary monolayer. Our theory not only can explain the previously reported twisted-bilayer altermagnets, but also can provide more possibilities to generate <mjx-container ctxtmenu_counter=\\\"40\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper A\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnets. Our research has significantly broadened the range of candidate materials for 2D altermagnets. Based on conclusion (i), the bilayer <mjx-container ctxtmenu_counter=\\\"41\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(2 0 1)\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"upper N i upper Z r upper C l 6\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">N</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">i</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">Z</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">r</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">C</mjx-c><mjx-c style=\\\"padding-top: 0.706em;\\\">l</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>6</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> is predicted to exhibit intrinsic <mjx-container ctxtmenu_counter=\\\"42\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper A\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnetism. Additionally, we use twisted-bilayer <mjx-container ctxtmenu_counter=\\\"43\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(2 0 1)\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"upper N i upper C l 2\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">N</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">i</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">C</mjx-c><mjx-c style=\\\"padding-top: 0.706em;\\\">l</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> and CrOCl as supplementary examples of BSAA. Furthermore, utilizing symmetry analysis and first-principles calculation, we scrutinize their spin-momentum locking characteristic to substantiate their altermagnetic properties.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.174410\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.174410","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
引用
批量引用