{"title":"提升的 TASEP:加速多粒子马尔可夫链的可解范式","authors":"Fabian H. L. Essler, Werner Krauth","doi":"10.1103/physrevx.14.041035","DOIUrl":null,"url":null,"abstract":"Virtually all Markov-chain Monte Carlo algorithms used for sampling a given distribution are reversible, and they satisfy the detailed-balance condition. For local chains, this leads to a slow, diffusive exploration of sample space. Significant speedups can be achieved through nonreversible algorithms with the given distribution as a targeted steady state. However, nonreversible algorithms for sampling are difficult to set up and to analyze, and exact speedup results for interacting many-particle systems are very rare. Here, we introduce the “lifted” totally asymmetric simple exclusion process (TASEP) as an exactly solvable paradigm for nonreversible many-particle Markov chains. It samples the same hard-sphere distribution as the Metropolis algorithm for symmetrically diffusing hard-core particles on a one-dimensional lattice. We solve the lifted TASEP by an unusual kind of coordinate Bethe ansatz and show that it exhibits polynomial (in particle number) speedups in the relaxation time for the asymptotic approach of the steady state, as well as the nonasymptotic mixing time, compared to both Metropolis and Kardar-Parisi-Zhang-based dynamics. The lifted TASEP is the reduction onto the one-dimensional lattice of the successful hard-sphere event-chain Monte Carlo algorithm, and we discuss that it can likewise be generalized to soft interaction potentials.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"69 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lifted TASEP: A Solvable Paradigm for Speeding up Many-Particle Markov Chains\",\"authors\":\"Fabian H. L. Essler, Werner Krauth\",\"doi\":\"10.1103/physrevx.14.041035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtually all Markov-chain Monte Carlo algorithms used for sampling a given distribution are reversible, and they satisfy the detailed-balance condition. For local chains, this leads to a slow, diffusive exploration of sample space. Significant speedups can be achieved through nonreversible algorithms with the given distribution as a targeted steady state. However, nonreversible algorithms for sampling are difficult to set up and to analyze, and exact speedup results for interacting many-particle systems are very rare. Here, we introduce the “lifted” totally asymmetric simple exclusion process (TASEP) as an exactly solvable paradigm for nonreversible many-particle Markov chains. It samples the same hard-sphere distribution as the Metropolis algorithm for symmetrically diffusing hard-core particles on a one-dimensional lattice. We solve the lifted TASEP by an unusual kind of coordinate Bethe ansatz and show that it exhibits polynomial (in particle number) speedups in the relaxation time for the asymptotic approach of the steady state, as well as the nonasymptotic mixing time, compared to both Metropolis and Kardar-Parisi-Zhang-based dynamics. The lifted TASEP is the reduction onto the one-dimensional lattice of the successful hard-sphere event-chain Monte Carlo algorithm, and we discuss that it can likewise be generalized to soft interaction potentials.\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.14.041035\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.041035","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Lifted TASEP: A Solvable Paradigm for Speeding up Many-Particle Markov Chains
Virtually all Markov-chain Monte Carlo algorithms used for sampling a given distribution are reversible, and they satisfy the detailed-balance condition. For local chains, this leads to a slow, diffusive exploration of sample space. Significant speedups can be achieved through nonreversible algorithms with the given distribution as a targeted steady state. However, nonreversible algorithms for sampling are difficult to set up and to analyze, and exact speedup results for interacting many-particle systems are very rare. Here, we introduce the “lifted” totally asymmetric simple exclusion process (TASEP) as an exactly solvable paradigm for nonreversible many-particle Markov chains. It samples the same hard-sphere distribution as the Metropolis algorithm for symmetrically diffusing hard-core particles on a one-dimensional lattice. We solve the lifted TASEP by an unusual kind of coordinate Bethe ansatz and show that it exhibits polynomial (in particle number) speedups in the relaxation time for the asymptotic approach of the steady state, as well as the nonasymptotic mixing time, compared to both Metropolis and Kardar-Parisi-Zhang-based dynamics. The lifted TASEP is the reduction onto the one-dimensional lattice of the successful hard-sphere event-chain Monte Carlo algorithm, and we discuss that it can likewise be generalized to soft interaction potentials.
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.