{"title":"反思当代生物识别数据纠错的深度学习技术","authors":"YenLung Lai, XingBo Dong, Zhe Jin, Wei Jia, Massimo Tistarelli, XueJun Li","doi":"10.1007/s11263-024-02280-8","DOIUrl":null,"url":null,"abstract":"<p>In the realm of cryptography, the implementation of error correction in biometric data offers many benefits, including secure data storage and key derivation. Deep learning-based decoders have emerged as a catalyst for improved error correction when decoding noisy biometric data. Although these decoders exhibit competence in approximating precise solutions, we expose the potential inadequacy of their security assurances through a minimum entropy analysis. This limitation curtails their applicability in secure biometric contexts, as the inherent complexities of their non-linear neural network architectures pose challenges in modeling the solution distribution precisely. To address this limitation, we introduce U-Sketch, a universal approach for error correction in biometrics, which converts arbitrary input random biometric source distributions into independent and identically distributed (i.i.d.) data while maintaining the pairwise distance of the data post-transformation. This method ensures interpretability within the decoder, facilitating transparent entropy analysis and a substantiated security claim. Moreover, U-Sketch employs Maximum Likelihood Decoding, which provides optimal error tolerance and a precise security guarantee.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"48 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rethinking Contemporary Deep Learning Techniques for Error Correction in Biometric Data\",\"authors\":\"YenLung Lai, XingBo Dong, Zhe Jin, Wei Jia, Massimo Tistarelli, XueJun Li\",\"doi\":\"10.1007/s11263-024-02280-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the realm of cryptography, the implementation of error correction in biometric data offers many benefits, including secure data storage and key derivation. Deep learning-based decoders have emerged as a catalyst for improved error correction when decoding noisy biometric data. Although these decoders exhibit competence in approximating precise solutions, we expose the potential inadequacy of their security assurances through a minimum entropy analysis. This limitation curtails their applicability in secure biometric contexts, as the inherent complexities of their non-linear neural network architectures pose challenges in modeling the solution distribution precisely. To address this limitation, we introduce U-Sketch, a universal approach for error correction in biometrics, which converts arbitrary input random biometric source distributions into independent and identically distributed (i.i.d.) data while maintaining the pairwise distance of the data post-transformation. This method ensures interpretability within the decoder, facilitating transparent entropy analysis and a substantiated security claim. Moreover, U-Sketch employs Maximum Likelihood Decoding, which provides optimal error tolerance and a precise security guarantee.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02280-8\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02280-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Rethinking Contemporary Deep Learning Techniques for Error Correction in Biometric Data
In the realm of cryptography, the implementation of error correction in biometric data offers many benefits, including secure data storage and key derivation. Deep learning-based decoders have emerged as a catalyst for improved error correction when decoding noisy biometric data. Although these decoders exhibit competence in approximating precise solutions, we expose the potential inadequacy of their security assurances through a minimum entropy analysis. This limitation curtails their applicability in secure biometric contexts, as the inherent complexities of their non-linear neural network architectures pose challenges in modeling the solution distribution precisely. To address this limitation, we introduce U-Sketch, a universal approach for error correction in biometrics, which converts arbitrary input random biometric source distributions into independent and identically distributed (i.i.d.) data while maintaining the pairwise distance of the data post-transformation. This method ensures interpretability within the decoder, facilitating transparent entropy analysis and a substantiated security claim. Moreover, U-Sketch employs Maximum Likelihood Decoding, which provides optimal error tolerance and a precise security guarantee.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.