Lin Chen, Kaixin Ji, Haochen Zhang, Ce Shen, Ruoshui Wang, Xiangdong Zeng, Ling-Yan Hung
求助PDF
{"title":"通过全息张量网络的 CFT𝐷fromTQFT𝐷+1 和 CFT 的精确离散化2","authors":"Lin Chen, Kaixin Ji, Haochen Zhang, Ce Shen, Ruoshui Wang, Xiangdong Zeng, Ling-Yan Hung","doi":"10.1103/physrevx.14.041033","DOIUrl":null,"url":null,"abstract":"We show that the path integral of conformal field theories in <mjx-container ctxtmenu_counter=\"143\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper D\" data-semantic-type=\"identifier\"><mjx-c>𝐷</mjx-c></mjx-mi></mjx-math></mjx-container> dimensions (<mjx-container ctxtmenu_counter=\"144\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper C upper F upper T Subscript upper D\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">C</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">F</mjx-c><mjx-c style=\"padding-top: 0.669em;\">T</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐷</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container>) can be constructed by solving for eigenstates of a renormalization group (RG) operator following from the Turaev-Viro formulation of a topological field theory (topological quantum field theory) (TQFT) in <mjx-container ctxtmenu_counter=\"145\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"addition\" data-semantic-speech=\"upper D plus 1\" data-semantic-structure=\"(3 0 1 2)\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"3\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"3\"><mjx-c>1</mjx-c></mjx-mn></mjx-math></mjx-container> dimensions (<mjx-container ctxtmenu_counter=\"146\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 (4 1 2 3))\"><mjx-msub data-semantic-children=\"0,4\" data-semantic- data-semantic-owns=\"0 4\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper T upper Q upper F upper T Subscript upper D plus 1\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">T</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">Q</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">F</mjx-c><mjx-c style=\"padding-top: 0.669em;\">T</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.208em;\"><mjx-mrow data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"5\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"4\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container>), explicitly realizing the holographic sandwich relation between a symmetric theory and a TQFT. Generically, exact eigenstates corresponding to symmetric <mjx-container ctxtmenu_counter=\"147\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper T upper Q upper F upper T Subscript upper D\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">T</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">Q</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">F</mjx-c><mjx-c style=\"padding-top: 0.669em;\">T</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.208em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐷</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> follow from Frobenius algebra in <mjx-container ctxtmenu_counter=\"148\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 (4 1 2 3))\"><mjx-msub data-semantic-children=\"0,4\" data-semantic- data-semantic-owns=\"0 4\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper T upper Q upper F upper T Subscript upper D plus 1\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">T</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">Q</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">F</mjx-c><mjx-c style=\"padding-top: 0.669em;\">T</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.208em;\"><mjx-mrow data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"5\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"4\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container>. For <mjx-container ctxtmenu_counter=\"149\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"equality\" data-semantic-speech=\"upper D equals 2\" data-semantic-structure=\"(3 0 1 2)\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>=</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c>2</mjx-c></mjx-mn></mjx-math></mjx-container>, we construct eigenstates that produce 2D rational CFT path integrals exactly, which curiously connect a continuous-field theoretic path integral with the Turaev-Viro state sum. We also devise and illustrate numerical methods for <mjx-container ctxtmenu_counter=\"150\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"equality\" data-semantic-speech=\"upper D equals 2\" data-semantic-structure=\"(3 0 1 2)\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>=</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c>2</mjx-c></mjx-mn></mjx-math></mjx-container>, 3 to search for <mjx-container ctxtmenu_counter=\"151\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper C upper F upper T Subscript upper D\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">C</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">F</mjx-c><mjx-c style=\"padding-top: 0.669em;\">T</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐷</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> as phase transition points between symmetric <mjx-container ctxtmenu_counter=\"152\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper T upper Q upper F upper T Subscript upper D\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">T</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">Q</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">F</mjx-c><mjx-c style=\"padding-top: 0.669em;\">T</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.208em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐷</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container>. Finally, since the RG operator is in fact an exact analytic holographic tensor network, we compute “bulk-boundary” correlators and compare them with the AdS/CFT dictionary at <mjx-container ctxtmenu_counter=\"153\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"equality\" data-semantic-speech=\"upper D equals 2\" data-semantic-structure=\"(3 0 1 2)\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>=</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c>2</mjx-c></mjx-mn></mjx-math></mjx-container>. Promisingly, they are numerically compatible given our accuracy, although further works will be needed to explore the precise connection to the AdS/CFT correspondence.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"1 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFT𝐷fromTQFT𝐷+1via Holographic Tensor Network, and Precision Discretization ofCFT2\",\"authors\":\"Lin Chen, Kaixin Ji, Haochen Zhang, Ce Shen, Ruoshui Wang, Xiangdong Zeng, Ling-Yan Hung\",\"doi\":\"10.1103/physrevx.14.041033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the path integral of conformal field theories in <mjx-container ctxtmenu_counter=\\\"143\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper D\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐷</mjx-c></mjx-mi></mjx-math></mjx-container> dimensions (<mjx-container ctxtmenu_counter=\\\"144\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(2 0 1)\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"upper C upper F upper T Subscript upper D\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">C</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">F</mjx-c><mjx-c style=\\\"padding-top: 0.669em;\\\">T</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝐷</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container>) can be constructed by solving for eigenstates of a renormalization group (RG) operator following from the Turaev-Viro formulation of a topological field theory (topological quantum field theory) (TQFT) in <mjx-container ctxtmenu_counter=\\\"145\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-owns=\\\"0 1 2\\\" data-semantic-role=\\\"addition\\\" data-semantic-speech=\\\"upper D plus 1\\\" data-semantic-structure=\\\"(3 0 1 2)\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-break size=\\\"3\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,+\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"operator\\\"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" space=\\\"3\\\"><mjx-c>1</mjx-c></mjx-mn></mjx-math></mjx-container> dimensions (<mjx-container ctxtmenu_counter=\\\"146\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(5 0 (4 1 2 3))\\\"><mjx-msub data-semantic-children=\\\"0,4\\\" data-semantic- data-semantic-owns=\\\"0 4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"upper T upper Q upper F upper T Subscript upper D plus 1\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">T</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">Q</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">F</mjx-c><mjx-c style=\\\"padding-top: 0.669em;\\\">T</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\\\"vertical-align: -0.208em;\\\"><mjx-mrow data-semantic-children=\\\"1,3\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-owns=\\\"1 2 3\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"infixop\\\" size=\\\"s\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,+\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"operator\\\"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>1</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container>), explicitly realizing the holographic sandwich relation between a symmetric theory and a TQFT. Generically, exact eigenstates corresponding to symmetric <mjx-container ctxtmenu_counter=\\\"147\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(2 0 1)\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"upper T upper Q upper F upper T Subscript upper D\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">T</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">Q</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">F</mjx-c><mjx-c style=\\\"padding-top: 0.669em;\\\">T</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\\\"vertical-align: -0.208em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝐷</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> follow from Frobenius algebra in <mjx-container ctxtmenu_counter=\\\"148\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(5 0 (4 1 2 3))\\\"><mjx-msub data-semantic-children=\\\"0,4\\\" data-semantic- data-semantic-owns=\\\"0 4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"upper T upper Q upper F upper T Subscript upper D plus 1\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">T</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">Q</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">F</mjx-c><mjx-c style=\\\"padding-top: 0.669em;\\\">T</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\\\"vertical-align: -0.208em;\\\"><mjx-mrow data-semantic-children=\\\"1,3\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-owns=\\\"1 2 3\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"infixop\\\" size=\\\"s\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,+\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"operator\\\"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>1</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container>. For <mjx-container ctxtmenu_counter=\\\"149\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-owns=\\\"0 1 2\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"upper D equals 2\\\" data-semantic-structure=\\\"(3 0 1 2)\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\"><mjx-c>=</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" space=\\\"4\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-math></mjx-container>, we construct eigenstates that produce 2D rational CFT path integrals exactly, which curiously connect a continuous-field theoretic path integral with the Turaev-Viro state sum. We also devise and illustrate numerical methods for <mjx-container ctxtmenu_counter=\\\"150\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-owns=\\\"0 1 2\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"upper D equals 2\\\" data-semantic-structure=\\\"(3 0 1 2)\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\"><mjx-c>=</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" space=\\\"4\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-math></mjx-container>, 3 to search for <mjx-container ctxtmenu_counter=\\\"151\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(2 0 1)\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"upper C upper F upper T Subscript upper D\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">C</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">F</mjx-c><mjx-c style=\\\"padding-top: 0.669em;\\\">T</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝐷</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> as phase transition points between symmetric <mjx-container ctxtmenu_counter=\\\"152\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(2 0 1)\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"upper T upper Q upper F upper T Subscript upper D\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">T</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">Q</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">F</mjx-c><mjx-c style=\\\"padding-top: 0.669em;\\\">T</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\\\"vertical-align: -0.208em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝐷</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container>. Finally, since the RG operator is in fact an exact analytic holographic tensor network, we compute “bulk-boundary” correlators and compare them with the AdS/CFT dictionary at <mjx-container ctxtmenu_counter=\\\"153\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-owns=\\\"0 1 2\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"upper D equals 2\\\" data-semantic-structure=\\\"(3 0 1 2)\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\"><mjx-c>=</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" space=\\\"4\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-math></mjx-container>. Promisingly, they are numerically compatible given our accuracy, although further works will be needed to explore the precise connection to the AdS/CFT correspondence.\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.14.041033\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.041033","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
引用
批量引用