在冷原子装置中创建的ℤ𝑁对称哈密顿中的无间隙去约束相

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Mykhailo V. Rakov, Luca Tagliacozzo, Maciej Lewenstein, Jakub Zakrzewski, Titas Chanda
{"title":"在冷原子装置中创建的ℤ𝑁对称哈密顿中的无间隙去约束相","authors":"Mykhailo V. Rakov, Luca Tagliacozzo, Maciej Lewenstein, Jakub Zakrzewski, Titas Chanda","doi":"10.1103/physrevb.110.195114","DOIUrl":null,"url":null,"abstract":"We investigate a quasi-two-dimensional system consisting of two species of alkali atoms confined in a specific optical lattice potential [<span>Phys. Rev. A</span> <b>95</b>, 053608 (2017)]. In the low-energy regime, this system is governed by a unique <mjx-container ctxtmenu_counter=\"70\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"numbersetletter\" data-semantic-speech=\"double struck upper Z Subscript upper N\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c>ℤ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑁</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> gauge theory, where field theory arguments have suggested that it may exhibit two exotic gapless deconfined phases, namely a dipolar liquid phase and a Bose liquid phase, along with two gapped (confined and deconfined) phases. We address these predictions numerically by using large-scale density matrix renormalization group simulations. Our findings provide conclusive evidence for the existence of a gapless Bose liquid phase for <mjx-container ctxtmenu_counter=\"71\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"inequality\" data-semantic-speech=\"upper N greater than or equals 7\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑁</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,≥\" data-semantic-parent=\"3\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>≥</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c>7</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container>. We demonstrate that this gapless phase shares the same critical properties as one-dimensional critical phases, resembling weakly coupled chains of Luttinger liquids. In the range of ladder and cylinder geometries and <mjx-container ctxtmenu_counter=\"72\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper N\" data-semantic-type=\"identifier\"><mjx-c>𝑁</mjx-c></mjx-mi></mjx-math></mjx-container> considered, the gapless dipolar phase predicted theoretically is still elusive and its characterization will probably require a full two-dimensional treatment.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"87 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gapless deconfined phase in aℤ𝑁-symmetric Hamiltonian created in a cold-atom setup\",\"authors\":\"Mykhailo V. Rakov, Luca Tagliacozzo, Maciej Lewenstein, Jakub Zakrzewski, Titas Chanda\",\"doi\":\"10.1103/physrevb.110.195114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a quasi-two-dimensional system consisting of two species of alkali atoms confined in a specific optical lattice potential [<span>Phys. Rev. A</span> <b>95</b>, 053608 (2017)]. In the low-energy regime, this system is governed by a unique <mjx-container ctxtmenu_counter=\\\"70\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(2 0 1)\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-role=\\\"numbersetletter\\\" data-semantic-speech=\\\"double struck upper Z Subscript upper N\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-font=\\\"double-struck\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"numbersetletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℤ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝑁</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> gauge theory, where field theory arguments have suggested that it may exhibit two exotic gapless deconfined phases, namely a dipolar liquid phase and a Bose liquid phase, along with two gapped (confined and deconfined) phases. We address these predictions numerically by using large-scale density matrix renormalization group simulations. Our findings provide conclusive evidence for the existence of a gapless Bose liquid phase for <mjx-container ctxtmenu_counter=\\\"71\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(3 0 1 2)\\\"><mjx-mrow data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-owns=\\\"0 1 2\\\" data-semantic-role=\\\"inequality\\\" data-semantic-speech=\\\"upper N greater than or equals 7\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑁</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,≥\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\" space=\\\"4\\\"><mjx-c>≥</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" space=\\\"4\\\"><mjx-c>7</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container>. We demonstrate that this gapless phase shares the same critical properties as one-dimensional critical phases, resembling weakly coupled chains of Luttinger liquids. In the range of ladder and cylinder geometries and <mjx-container ctxtmenu_counter=\\\"72\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper N\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑁</mjx-c></mjx-mi></mjx-math></mjx-container> considered, the gapless dipolar phase predicted theoretically is still elusive and its characterization will probably require a full two-dimensional treatment.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.195114\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.195114","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个由两种碱原子组成的准二维系统,它被限制在一个特定的光学晶格势中[Phys. Rev. A 95, 053608 (2017)]。在低能体系中,该体系受一个独特的ℤ𝑁规理论支配,场论论证表明它可能表现出两个奇异的无间隙去致密相,即双极液相和玻色液相,以及两个间隙(致密和去致密)相。我们利用大尺度密度矩阵重正化群模拟对这些预测进行了数值处理。我们的发现为𝑁≥7 存在无间隙玻色液相提供了确凿的证据。我们证明了这种无间隙相具有与一维临界相相同的临界性质,类似于弱耦合的鲁丁格液体链。在所考虑的梯形和圆柱体几何形状及𝑁 的范围内,理论上预测的无间隙偶极相仍然难以捉摸,其特征可能需要全面的二维处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gapless deconfined phase in aℤ𝑁-symmetric Hamiltonian created in a cold-atom setup
We investigate a quasi-two-dimensional system consisting of two species of alkali atoms confined in a specific optical lattice potential [Phys. Rev. A 95, 053608 (2017)]. In the low-energy regime, this system is governed by a unique 𝑁 gauge theory, where field theory arguments have suggested that it may exhibit two exotic gapless deconfined phases, namely a dipolar liquid phase and a Bose liquid phase, along with two gapped (confined and deconfined) phases. We address these predictions numerically by using large-scale density matrix renormalization group simulations. Our findings provide conclusive evidence for the existence of a gapless Bose liquid phase for 𝑁7. We demonstrate that this gapless phase shares the same critical properties as one-dimensional critical phases, resembling weakly coupled chains of Luttinger liquids. In the range of ladder and cylinder geometries and 𝑁 considered, the gapless dipolar phase predicted theoretically is still elusive and its characterization will probably require a full two-dimensional treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信