在投影仪增强波形式主义中进行总能量计算的协变雅各比-勒根德扩张

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Bruno Focassio, Michelangelo Domina, Urvesh Patil, Adalberto Fazzio, Stefano Sanvito
{"title":"在投影仪增强波形式主义中进行总能量计算的协变雅各比-勒根德扩张","authors":"Bruno Focassio, Michelangelo Domina, Urvesh Patil, Adalberto Fazzio, Stefano Sanvito","doi":"10.1103/physrevb.110.184106","DOIUrl":null,"url":null,"abstract":"Machine-learning models can be trained to predict the converged electron charge density of a density functional theory (DFT) calculation. In general, the value of the density at a given point in space is invariant under global translations and rotations having that point as a center. Hence, one can construct locally invariant machine-learning density predictors. However, the widely used projector augmented wave (PAW) implementation of DFT requires the evaluation of the one-center augmentation contributions that are not rotationally invariant. Building on our recently proposed Jacobi-Legendre charge-density scheme, we construct a covariant Jacobi-Legendre model capable of predicting the local occupancies needed to compose the augmentation charge density. Our formalism is then applied to the prediction of the energy barrier for the 1H-to-1T phase transition of two-dimensional <mjx-container ctxtmenu_counter=\"7\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper M o upper S 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">M</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">o</mjx-c><mjx-c style=\"padding-top: 0.669em;\">S</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container>. With extremely modest training, the model is capable of performing a non-self-consistent nudged elastic band calculation at virtually the same accuracy as a fully DFT-converged one, thus saving thousands of self-consistent DFT steps. Furthermore, at variance with machine-learning force fields, the charge density is here available for any nudged elastic band image, so that we can trace the evolution of the electronic structure across the phase transition.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covariant Jacobi-Legendre expansion for total energy calculations within the projector augmented wave formalism\",\"authors\":\"Bruno Focassio, Michelangelo Domina, Urvesh Patil, Adalberto Fazzio, Stefano Sanvito\",\"doi\":\"10.1103/physrevb.110.184106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine-learning models can be trained to predict the converged electron charge density of a density functional theory (DFT) calculation. In general, the value of the density at a given point in space is invariant under global translations and rotations having that point as a center. Hence, one can construct locally invariant machine-learning density predictors. However, the widely used projector augmented wave (PAW) implementation of DFT requires the evaluation of the one-center augmentation contributions that are not rotationally invariant. Building on our recently proposed Jacobi-Legendre charge-density scheme, we construct a covariant Jacobi-Legendre model capable of predicting the local occupancies needed to compose the augmentation charge density. Our formalism is then applied to the prediction of the energy barrier for the 1H-to-1T phase transition of two-dimensional <mjx-container ctxtmenu_counter=\\\"7\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(2 0 1)\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"upper M o upper S 2\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">M</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">o</mjx-c><mjx-c style=\\\"padding-top: 0.669em;\\\">S</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container>. With extremely modest training, the model is capable of performing a non-self-consistent nudged elastic band calculation at virtually the same accuracy as a fully DFT-converged one, thus saving thousands of self-consistent DFT steps. Furthermore, at variance with machine-learning force fields, the charge density is here available for any nudged elastic band image, so that we can trace the evolution of the electronic structure across the phase transition.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.184106\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.184106","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

可以训练机器学习模型来预测密度泛函理论(DFT)计算的收敛电子电荷密度。一般来说,空间中某一点的密度值在以该点为中心的全局平移和旋转下是不变的。因此,我们可以构建局部不变的机器学习密度预测器。然而,广泛使用的投影增强波(PAW)DFT 实现需要评估不具有旋转不变性的单中心增强贡献。基于我们最近提出的雅各比-勒根德电荷密度方案,我们构建了一个协变雅各比-勒根德模型,该模型能够预测构成增强电荷密度所需的局部占位。我们的形式主义随后被应用于预测二维 MoS2 的 1H 到 1T 相变的能障。只需极少的训练,该模型就能以与完全 DFT 融合模型相同的精度进行非自洽推导弹性带计算,从而节省了数千个自洽 DFT 步骤。此外,与机器学习力场不同的是,这里的电荷密度可用于任何裸弹带图像,因此我们可以追踪整个相变过程中电子结构的演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covariant Jacobi-Legendre expansion for total energy calculations within the projector augmented wave formalism
Machine-learning models can be trained to predict the converged electron charge density of a density functional theory (DFT) calculation. In general, the value of the density at a given point in space is invariant under global translations and rotations having that point as a center. Hence, one can construct locally invariant machine-learning density predictors. However, the widely used projector augmented wave (PAW) implementation of DFT requires the evaluation of the one-center augmentation contributions that are not rotationally invariant. Building on our recently proposed Jacobi-Legendre charge-density scheme, we construct a covariant Jacobi-Legendre model capable of predicting the local occupancies needed to compose the augmentation charge density. Our formalism is then applied to the prediction of the energy barrier for the 1H-to-1T phase transition of two-dimensional MoS2. With extremely modest training, the model is capable of performing a non-self-consistent nudged elastic band calculation at virtually the same accuracy as a fully DFT-converged one, thus saving thousands of self-consistent DFT steps. Furthermore, at variance with machine-learning force fields, the charge density is here available for any nudged elastic band image, so that we can trace the evolution of the electronic structure across the phase transition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信