有界内聚面项的自由不连续函数的均质化问题

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Gianni Dal Maso, Rodica Toader
{"title":"有界内聚面项的自由不连续函数的均质化问题","authors":"Gianni Dal Maso,&nbsp;Rodica Toader","doi":"10.1007/s00205-024-02053-0","DOIUrl":null,"url":null,"abstract":"<div><p>We study stochastic homogenisation problems for free discontinuity functionals under a new assumption on the surface terms, motivated by cohesive fracture models. The results are obtained using a characterization of the limit functional by means of the asymptotic behaviour of suitable minimisation problems on cubes with very simple boundary conditions. An important role is played by the subadditive ergodic theorem.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogenisation Problems for Free Discontinuity Functionals with Bounded Cohesive Surface Terms\",\"authors\":\"Gianni Dal Maso,&nbsp;Rodica Toader\",\"doi\":\"10.1007/s00205-024-02053-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study stochastic homogenisation problems for free discontinuity functionals under a new assumption on the surface terms, motivated by cohesive fracture models. The results are obtained using a characterization of the limit functional by means of the asymptotic behaviour of suitable minimisation problems on cubes with very simple boundary conditions. An important role is played by the subadditive ergodic theorem.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-02053-0\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02053-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

受内聚断裂模型的启发,我们研究了表面项新假设下自由不连续函数的随机均质化问题。研究结果是通过对具有非常简单边界条件的立方体上合适的最小化问题的渐近行为,利用极限函数的特征描述获得的。亚加性遍历定理发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogenisation Problems for Free Discontinuity Functionals with Bounded Cohesive Surface Terms

We study stochastic homogenisation problems for free discontinuity functionals under a new assumption on the surface terms, motivated by cohesive fracture models. The results are obtained using a characterization of the limit functional by means of the asymptotic behaviour of suitable minimisation problems on cubes with very simple boundary conditions. An important role is played by the subadditive ergodic theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信