{"title":"简单 R 模块上的胡勒维茨模型结构","authors":"Arnaud Ngopnang Ngompé","doi":"10.1007/s40062-024-00359-0","DOIUrl":null,"url":null,"abstract":"<div><p>By a theorem of Christensen and Hovey, the category of non-negatively graded chain complexes has a model structure, called the h-model structure or Hurewicz model structure, where the weak equivalences are the chain homotopy equivalences. The Dold–Kan correspondence induces a model structure on the category of simplicial modules. In this paper, we give a description of the two model categories and some of their properties, notably the fact that both are monoidal.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"19 4","pages":"701 - 723"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hurewicz model structure on simplicial R-modules\",\"authors\":\"Arnaud Ngopnang Ngompé\",\"doi\":\"10.1007/s40062-024-00359-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By a theorem of Christensen and Hovey, the category of non-negatively graded chain complexes has a model structure, called the h-model structure or Hurewicz model structure, where the weak equivalences are the chain homotopy equivalences. The Dold–Kan correspondence induces a model structure on the category of simplicial modules. In this paper, we give a description of the two model categories and some of their properties, notably the fact that both are monoidal.</p></div>\",\"PeriodicalId\":49034,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"19 4\",\"pages\":\"701 - 723\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-024-00359-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-024-00359-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
根据克里斯滕森和霍维的定理,非负级链复数范畴有一个模型结构,称为 h 模型结构或胡勒维茨模型结构,其中弱等价是链同调等价。多尔-坎对应关系在单纯模范畴上诱导出一种模型结构。在本文中,我们将描述这两个模型范畴及其某些性质,特别是它们都是单式的这一事实。
The Hurewicz model structure on simplicial R-modules
By a theorem of Christensen and Hovey, the category of non-negatively graded chain complexes has a model structure, called the h-model structure or Hurewicz model structure, where the weak equivalences are the chain homotopy equivalences. The Dold–Kan correspondence induces a model structure on the category of simplicial modules. In this paper, we give a description of the two model categories and some of their properties, notably the fact that both are monoidal.
期刊介绍:
Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences.
Journal of Homotopy and Related Structures is intended to publish papers on
Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.