简单 R 模块上的胡勒维茨模型结构

IF 0.7 4区 数学 Q2 MATHEMATICS
Arnaud Ngopnang Ngompé
{"title":"简单 R 模块上的胡勒维茨模型结构","authors":"Arnaud Ngopnang Ngompé","doi":"10.1007/s40062-024-00359-0","DOIUrl":null,"url":null,"abstract":"<div><p>By a theorem of Christensen and Hovey, the category of non-negatively graded chain complexes has a model structure, called the h-model structure or Hurewicz model structure, where the weak equivalences are the chain homotopy equivalences. The Dold–Kan correspondence induces a model structure on the category of simplicial modules. In this paper, we give a description of the two model categories and some of their properties, notably the fact that both are monoidal.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"19 4","pages":"701 - 723"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hurewicz model structure on simplicial R-modules\",\"authors\":\"Arnaud Ngopnang Ngompé\",\"doi\":\"10.1007/s40062-024-00359-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By a theorem of Christensen and Hovey, the category of non-negatively graded chain complexes has a model structure, called the h-model structure or Hurewicz model structure, where the weak equivalences are the chain homotopy equivalences. The Dold–Kan correspondence induces a model structure on the category of simplicial modules. In this paper, we give a description of the two model categories and some of their properties, notably the fact that both are monoidal.</p></div>\",\"PeriodicalId\":49034,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"19 4\",\"pages\":\"701 - 723\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-024-00359-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-024-00359-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

根据克里斯滕森和霍维的定理,非负级链复数范畴有一个模型结构,称为 h 模型结构或胡勒维茨模型结构,其中弱等价是链同调等价。多尔-坎对应关系在单纯模范畴上诱导出一种模型结构。在本文中,我们将描述这两个模型范畴及其某些性质,特别是它们都是单式的这一事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Hurewicz model structure on simplicial R-modules

By a theorem of Christensen and Hovey, the category of non-negatively graded chain complexes has a model structure, called the h-model structure or Hurewicz model structure, where the weak equivalences are the chain homotopy equivalences. The Dold–Kan correspondence induces a model structure on the category of simplicial modules. In this paper, we give a description of the two model categories and some of their properties, notably the fact that both are monoidal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信