{"title":"基于启发式的多代理深度强化学习方法,用于在非信号灯路口协调互联车辆和自动驾驶车辆","authors":"Zihan Guo;Yan Wu;Lifang Wang;Junzhi Zhang","doi":"10.1109/TITS.2024.3407760","DOIUrl":null,"url":null,"abstract":"One typical application of connected and automated vehicles (CAVs) is to coordinate multiple CAVs at a non-signalized intersection in mixed traffic, and it may take advantage of multi-agent deep reinforcement learning (MDRL) approaches to improve the overall coordination efficiency. This study proposes a heuristic-based MDRL algorithm (H-QMIX) developed based on a value-based MDRL algorithm, QMIX. This algorithm incorporates a heuristic-based action mask module to guide CAVs efficiently and safely through intersections, composed of a stimulative passing sequence and safety restrictions on CAVs’ action space in the junction area. Compared with other MDRL algorithms (e.g., IPPO, QMIX), the H-QMIX algorithm demonstrates improved training performance in terms of safety and efficiency in two case studies, where the first requires all CAVs to affix their routes, and another allows CAVs to choose random routes. Concerning the model’s generalization ability, the trained models with the maximal episodic return are then transferred to a more practical scenario with a certain vehicle-to-vehicle (V2V) communication delay in a zero-shot manner. The simulation results illustrate that H-QMIX is robust to a certain communication delay. The code for this paper is available at: \n<uri>https://github.com/flammingRaven/heuristic_based_qmix</uri>\n.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"25 11","pages":"16235-16248"},"PeriodicalIF":7.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heuristic-Based Multi-Agent Deep Reinforcement Learning Approach for Coordinating Connected and Automated Vehicles at Non-Signalized Intersection\",\"authors\":\"Zihan Guo;Yan Wu;Lifang Wang;Junzhi Zhang\",\"doi\":\"10.1109/TITS.2024.3407760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One typical application of connected and automated vehicles (CAVs) is to coordinate multiple CAVs at a non-signalized intersection in mixed traffic, and it may take advantage of multi-agent deep reinforcement learning (MDRL) approaches to improve the overall coordination efficiency. This study proposes a heuristic-based MDRL algorithm (H-QMIX) developed based on a value-based MDRL algorithm, QMIX. This algorithm incorporates a heuristic-based action mask module to guide CAVs efficiently and safely through intersections, composed of a stimulative passing sequence and safety restrictions on CAVs’ action space in the junction area. Compared with other MDRL algorithms (e.g., IPPO, QMIX), the H-QMIX algorithm demonstrates improved training performance in terms of safety and efficiency in two case studies, where the first requires all CAVs to affix their routes, and another allows CAVs to choose random routes. Concerning the model’s generalization ability, the trained models with the maximal episodic return are then transferred to a more practical scenario with a certain vehicle-to-vehicle (V2V) communication delay in a zero-shot manner. The simulation results illustrate that H-QMIX is robust to a certain communication delay. The code for this paper is available at: \\n<uri>https://github.com/flammingRaven/heuristic_based_qmix</uri>\\n.\",\"PeriodicalId\":13416,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Transportation Systems\",\"volume\":\"25 11\",\"pages\":\"16235-16248\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10715514/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10715514/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Heuristic-Based Multi-Agent Deep Reinforcement Learning Approach for Coordinating Connected and Automated Vehicles at Non-Signalized Intersection
One typical application of connected and automated vehicles (CAVs) is to coordinate multiple CAVs at a non-signalized intersection in mixed traffic, and it may take advantage of multi-agent deep reinforcement learning (MDRL) approaches to improve the overall coordination efficiency. This study proposes a heuristic-based MDRL algorithm (H-QMIX) developed based on a value-based MDRL algorithm, QMIX. This algorithm incorporates a heuristic-based action mask module to guide CAVs efficiently and safely through intersections, composed of a stimulative passing sequence and safety restrictions on CAVs’ action space in the junction area. Compared with other MDRL algorithms (e.g., IPPO, QMIX), the H-QMIX algorithm demonstrates improved training performance in terms of safety and efficiency in two case studies, where the first requires all CAVs to affix their routes, and another allows CAVs to choose random routes. Concerning the model’s generalization ability, the trained models with the maximal episodic return are then transferred to a more practical scenario with a certain vehicle-to-vehicle (V2V) communication delay in a zero-shot manner. The simulation results illustrate that H-QMIX is robust to a certain communication delay. The code for this paper is available at:
https://github.com/flammingRaven/heuristic_based_qmix
.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.