多线性核回归和通过 Manifold Learning 进行推算

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Duc Thien Nguyen;Konstantinos Slavakis
{"title":"多线性核回归和通过 Manifold Learning 进行推算","authors":"Duc Thien Nguyen;Konstantinos Slavakis","doi":"10.1109/OJSP.2024.3444707","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel kernel regression framework for data imputation, coined multilinear kernel regression and imputation via the manifold assumption (MultiL-KRIM). Motivated by manifold learning, MultiL-KRIM models data features as a point-cloud located in or close to a user-unknown smooth manifold embedded in a reproducing kernel Hilbert space. Unlike typical manifold-learning routes, which seek low-dimensional patterns via regularizers based on graph-Laplacian matrices, MultiL-KRIM builds instead on the intuitive concept of tangent spaces to manifolds and incorporates collaboration among point-cloud neighbors (regressors) directly into the data-modeling term of the loss function. Multiple kernel functions are allowed to offer robustness and rich approximation properties, while multiple matrix factors offer low-rank modeling, dimensionality reduction and streamlined computations, with no need of training data. Two important application domains showcase the functionality of MultiL-KRIM: time-varying-graph-signal (TVGS) recovery, and reconstruction of highly accelerated dynamic-magnetic-resonance-imaging (dMRI) data. Extensive numerical tests on real TVGS and synthetic dMRI data demonstrate that the “shallow” MultiL-KRIM offers remarkable speedups over its predecessors and outperforms other “shallow” state-of-the-art techniques, with a more intuitive and explainable pipeline than deep-image-prior methods.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"1073-1088"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10637724","citationCount":"0","resultStr":"{\"title\":\"Multilinear Kernel Regression and Imputation via Manifold Learning\",\"authors\":\"Duc Thien Nguyen;Konstantinos Slavakis\",\"doi\":\"10.1109/OJSP.2024.3444707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel kernel regression framework for data imputation, coined multilinear kernel regression and imputation via the manifold assumption (MultiL-KRIM). Motivated by manifold learning, MultiL-KRIM models data features as a point-cloud located in or close to a user-unknown smooth manifold embedded in a reproducing kernel Hilbert space. Unlike typical manifold-learning routes, which seek low-dimensional patterns via regularizers based on graph-Laplacian matrices, MultiL-KRIM builds instead on the intuitive concept of tangent spaces to manifolds and incorporates collaboration among point-cloud neighbors (regressors) directly into the data-modeling term of the loss function. Multiple kernel functions are allowed to offer robustness and rich approximation properties, while multiple matrix factors offer low-rank modeling, dimensionality reduction and streamlined computations, with no need of training data. Two important application domains showcase the functionality of MultiL-KRIM: time-varying-graph-signal (TVGS) recovery, and reconstruction of highly accelerated dynamic-magnetic-resonance-imaging (dMRI) data. Extensive numerical tests on real TVGS and synthetic dMRI data demonstrate that the “shallow” MultiL-KRIM offers remarkable speedups over its predecessors and outperforms other “shallow” state-of-the-art techniques, with a more intuitive and explainable pipeline than deep-image-prior methods.\",\"PeriodicalId\":73300,\"journal\":{\"name\":\"IEEE open journal of signal processing\",\"volume\":\"5 \",\"pages\":\"1073-1088\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10637724\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10637724/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10637724/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于数据归因的新型核回归框架,被称为多线性核回归和流形假设归因(MultiL-KRIM)。受流形学习的启发,MultiL-KRIM 将数据特征建模为一个点云,该点云位于或接近嵌入再现核希尔伯特空间的用户未知光滑流形。典型的流形学习方法是通过基于图-拉普拉斯矩阵的正则来寻求低维模式,与此不同,MultiL-KRIM 基于流形切空间的直观概念,将点云邻域(回归因子)之间的协作直接纳入损失函数的数据建模项中。多个核函数可提供稳健性和丰富的近似特性,而多个矩阵因子可提供低阶建模、降维和简化计算,且无需训练数据。两个重要应用领域展示了 MultiL-KRIM 的功能:时变图信号(TVGS)恢复和高加速动态磁共振成像(dMRI)数据重建。在真实 TVGS 和合成 dMRI 数据上进行的大量数值测试表明,"浅层 "MultiL-KRIM 比其前辈技术有显著的提速,并优于其他 "浅层 "先进技术,其管道比深度成像前辈方法更直观、更易解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multilinear Kernel Regression and Imputation via Manifold Learning
This paper introduces a novel kernel regression framework for data imputation, coined multilinear kernel regression and imputation via the manifold assumption (MultiL-KRIM). Motivated by manifold learning, MultiL-KRIM models data features as a point-cloud located in or close to a user-unknown smooth manifold embedded in a reproducing kernel Hilbert space. Unlike typical manifold-learning routes, which seek low-dimensional patterns via regularizers based on graph-Laplacian matrices, MultiL-KRIM builds instead on the intuitive concept of tangent spaces to manifolds and incorporates collaboration among point-cloud neighbors (regressors) directly into the data-modeling term of the loss function. Multiple kernel functions are allowed to offer robustness and rich approximation properties, while multiple matrix factors offer low-rank modeling, dimensionality reduction and streamlined computations, with no need of training data. Two important application domains showcase the functionality of MultiL-KRIM: time-varying-graph-signal (TVGS) recovery, and reconstruction of highly accelerated dynamic-magnetic-resonance-imaging (dMRI) data. Extensive numerical tests on real TVGS and synthetic dMRI data demonstrate that the “shallow” MultiL-KRIM offers remarkable speedups over its predecessors and outperforms other “shallow” state-of-the-art techniques, with a more intuitive and explainable pipeline than deep-image-prior methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信