Jie Wang , Shuiping Yuan , Tuantuan Lu , Hao Zhao , Yongxiang Zhao
{"title":"融合 YOLOv5s-MediaPipe-HRV 对电子学习中的参与度进行分类:从外部观察和内部因素的角度","authors":"Jie Wang , Shuiping Yuan , Tuantuan Lu , Hao Zhao , Yongxiang Zhao","doi":"10.1016/j.knosys.2024.112670","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid advancements in computer vision technology present significant potential for the automatic recognition of learner engagement in E-learning. We conducted a two-stage experiment to assess learner engagement based on behavioural (external observations) and physiological (internal factors) cues. Using computer vision technology and wearable sensors, we extracted three feature sets: action, head posture and heart rate variability (HRV). Subsequently, we integrated our constructed YOLOv5s–MediaPipe behaviour detection model with a physiological detection model based on HRV to comprehensively evaluate learners’ behavioural, affective and cognitive engagement. Additionally, we developed a method and criteria for assessing distraction based on behaviour, ultimately creating a comprehensive, efficient, low-cost and easy-to-use system for the automatic recognition of learner engagement. Experimental results showed that our improved YOLOv5s model achieved a mean average precision of 92.2 %, while halving both the number of parameters and model size. Unlike other deep learning-based methods, using MediaPipe–OpenCV for head posture analysis offers advantages in real-time performance, making it lightweight and easy to deploy. Our proposed long short-term memory classifier, based on sensitive HRV metrics and their normalisation, demonstrated satisfactory performance on the test set, with an accuracy = 80 %, precision = 81 %, recall = 80 % and an F1 score = 80 %.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"305 ","pages":"Article 112670"},"PeriodicalIF":7.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fusing YOLOv5s-MediaPipe-HRV to classify engagement in E-learning: From the perspective of external observations and internal factors\",\"authors\":\"Jie Wang , Shuiping Yuan , Tuantuan Lu , Hao Zhao , Yongxiang Zhao\",\"doi\":\"10.1016/j.knosys.2024.112670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid advancements in computer vision technology present significant potential for the automatic recognition of learner engagement in E-learning. We conducted a two-stage experiment to assess learner engagement based on behavioural (external observations) and physiological (internal factors) cues. Using computer vision technology and wearable sensors, we extracted three feature sets: action, head posture and heart rate variability (HRV). Subsequently, we integrated our constructed YOLOv5s–MediaPipe behaviour detection model with a physiological detection model based on HRV to comprehensively evaluate learners’ behavioural, affective and cognitive engagement. Additionally, we developed a method and criteria for assessing distraction based on behaviour, ultimately creating a comprehensive, efficient, low-cost and easy-to-use system for the automatic recognition of learner engagement. Experimental results showed that our improved YOLOv5s model achieved a mean average precision of 92.2 %, while halving both the number of parameters and model size. Unlike other deep learning-based methods, using MediaPipe–OpenCV for head posture analysis offers advantages in real-time performance, making it lightweight and easy to deploy. Our proposed long short-term memory classifier, based on sensitive HRV metrics and their normalisation, demonstrated satisfactory performance on the test set, with an accuracy = 80 %, precision = 81 %, recall = 80 % and an F1 score = 80 %.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"305 \",\"pages\":\"Article 112670\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124013042\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013042","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Fusing YOLOv5s-MediaPipe-HRV to classify engagement in E-learning: From the perspective of external observations and internal factors
The rapid advancements in computer vision technology present significant potential for the automatic recognition of learner engagement in E-learning. We conducted a two-stage experiment to assess learner engagement based on behavioural (external observations) and physiological (internal factors) cues. Using computer vision technology and wearable sensors, we extracted three feature sets: action, head posture and heart rate variability (HRV). Subsequently, we integrated our constructed YOLOv5s–MediaPipe behaviour detection model with a physiological detection model based on HRV to comprehensively evaluate learners’ behavioural, affective and cognitive engagement. Additionally, we developed a method and criteria for assessing distraction based on behaviour, ultimately creating a comprehensive, efficient, low-cost and easy-to-use system for the automatic recognition of learner engagement. Experimental results showed that our improved YOLOv5s model achieved a mean average precision of 92.2 %, while halving both the number of parameters and model size. Unlike other deep learning-based methods, using MediaPipe–OpenCV for head posture analysis offers advantages in real-time performance, making it lightweight and easy to deploy. Our proposed long short-term memory classifier, based on sensitive HRV metrics and their normalisation, demonstrated satisfactory performance on the test set, with an accuracy = 80 %, precision = 81 %, recall = 80 % and an F1 score = 80 %.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.