Ismail A. Soliman , Vladimir Tulsky , Hossam A. Abd el-Ghany , Ahmed E. ElGebaly
{"title":"径向网络中充电站和车辆同时并网运行的综合分配算法","authors":"Ismail A. Soliman , Vladimir Tulsky , Hossam A. Abd el-Ghany , Ahmed E. ElGebaly","doi":"10.1016/j.compeleceng.2024.109836","DOIUrl":null,"url":null,"abstract":"<div><div>The widespread adoption of electric vehicles (EVs) helps improve air quality by minimizing pollutants and promoting sustainable transportation practices. The integration of a substantial fleet of EVs leads to an increase in the installation of charging stations. The unplanned allocation of these loads impacts the distribution systems, such as increasing power loss. This paper introduces an algorithm that proposes an optimal allocation strategy for charging stations (CSs) in a distribution system. The allocation process aims to minimize the total apparent energy losses and ensure that the system voltage profile remains within limits. Load profile, charging and discharging profiles of CSs are considered. Vehicle-to-Grid (V2G) mode is one of the merits of integrating EVs in the grid, so this feature has been used to maintain system voltage stability and minimize energy loss. Power rating and locations of V2G mode are optimally determined to guarantee power quality indices. A hybrid algorithm of genetic algorithm (GA) and Self-Adaptive Multi-Population Elitist JAYA (SAMPE-JAYA) is developed to simultaneously allocate CSs and V2G in the systems. The proposed algorithm is verified on standard systems, IEEE 33, and 69-bus systems. The proposed algorithm is verified on standard IEEE 33-bus and 69-bus systems. V2G integration with CSs results in a reduction of energy losses by 6.33% and 22.25%, respectively, and voltage deviation improvements to 7.61% and 7.88% for the two systems.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109836"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive simultaneous allocation algorithm of charging stations and vehicle to grid operation in radial networks\",\"authors\":\"Ismail A. Soliman , Vladimir Tulsky , Hossam A. Abd el-Ghany , Ahmed E. ElGebaly\",\"doi\":\"10.1016/j.compeleceng.2024.109836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The widespread adoption of electric vehicles (EVs) helps improve air quality by minimizing pollutants and promoting sustainable transportation practices. The integration of a substantial fleet of EVs leads to an increase in the installation of charging stations. The unplanned allocation of these loads impacts the distribution systems, such as increasing power loss. This paper introduces an algorithm that proposes an optimal allocation strategy for charging stations (CSs) in a distribution system. The allocation process aims to minimize the total apparent energy losses and ensure that the system voltage profile remains within limits. Load profile, charging and discharging profiles of CSs are considered. Vehicle-to-Grid (V2G) mode is one of the merits of integrating EVs in the grid, so this feature has been used to maintain system voltage stability and minimize energy loss. Power rating and locations of V2G mode are optimally determined to guarantee power quality indices. A hybrid algorithm of genetic algorithm (GA) and Self-Adaptive Multi-Population Elitist JAYA (SAMPE-JAYA) is developed to simultaneously allocate CSs and V2G in the systems. The proposed algorithm is verified on standard systems, IEEE 33, and 69-bus systems. The proposed algorithm is verified on standard IEEE 33-bus and 69-bus systems. V2G integration with CSs results in a reduction of energy losses by 6.33% and 22.25%, respectively, and voltage deviation improvements to 7.61% and 7.88% for the two systems.</div></div>\",\"PeriodicalId\":50630,\"journal\":{\"name\":\"Computers & Electrical Engineering\",\"volume\":\"120 \",\"pages\":\"Article 109836\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Electrical Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045790624007638\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624007638","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A comprehensive simultaneous allocation algorithm of charging stations and vehicle to grid operation in radial networks
The widespread adoption of electric vehicles (EVs) helps improve air quality by minimizing pollutants and promoting sustainable transportation practices. The integration of a substantial fleet of EVs leads to an increase in the installation of charging stations. The unplanned allocation of these loads impacts the distribution systems, such as increasing power loss. This paper introduces an algorithm that proposes an optimal allocation strategy for charging stations (CSs) in a distribution system. The allocation process aims to minimize the total apparent energy losses and ensure that the system voltage profile remains within limits. Load profile, charging and discharging profiles of CSs are considered. Vehicle-to-Grid (V2G) mode is one of the merits of integrating EVs in the grid, so this feature has been used to maintain system voltage stability and minimize energy loss. Power rating and locations of V2G mode are optimally determined to guarantee power quality indices. A hybrid algorithm of genetic algorithm (GA) and Self-Adaptive Multi-Population Elitist JAYA (SAMPE-JAYA) is developed to simultaneously allocate CSs and V2G in the systems. The proposed algorithm is verified on standard systems, IEEE 33, and 69-bus systems. The proposed algorithm is verified on standard IEEE 33-bus and 69-bus systems. V2G integration with CSs results in a reduction of energy losses by 6.33% and 22.25%, respectively, and voltage deviation improvements to 7.61% and 7.88% for the two systems.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.