{"title":"用于极端不平衡数据的加权支持向量机","authors":"Jongmin Mun , Sungwan Bang , Jaeoh Kim","doi":"10.1016/j.csda.2024.108078","DOIUrl":null,"url":null,"abstract":"<div><div>Based on an asymptotically optimal weighted support vector machine (SVM) that introduces label shift, a systematic procedure is derived for applying oversampling and weighted SVM to extremely imbalanced datasets with a cluster-structured positive class. This method formalizes three intuitions: (i) oversampling should reflect the structure of the positive class; (ii) weights should account for both the imbalance and oversampling ratios; (iii) synthetic samples should carry less weight than the original samples. The proposed method generates synthetic samples from the estimated positive class distribution using a Gaussian mixture model. To prevent overfitting to excessive synthetic samples, different misclassification penalties are assigned to the original positive class, synthetic positive class, and negative class. The proposed method is numerically validated through simulations and an analysis of Republic of Korea Army artillery training data.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted support vector machine for extremely imbalanced data\",\"authors\":\"Jongmin Mun , Sungwan Bang , Jaeoh Kim\",\"doi\":\"10.1016/j.csda.2024.108078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on an asymptotically optimal weighted support vector machine (SVM) that introduces label shift, a systematic procedure is derived for applying oversampling and weighted SVM to extremely imbalanced datasets with a cluster-structured positive class. This method formalizes three intuitions: (i) oversampling should reflect the structure of the positive class; (ii) weights should account for both the imbalance and oversampling ratios; (iii) synthetic samples should carry less weight than the original samples. The proposed method generates synthetic samples from the estimated positive class distribution using a Gaussian mixture model. To prevent overfitting to excessive synthetic samples, different misclassification penalties are assigned to the original positive class, synthetic positive class, and negative class. The proposed method is numerically validated through simulations and an analysis of Republic of Korea Army artillery training data.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001622\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001622","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Weighted support vector machine for extremely imbalanced data
Based on an asymptotically optimal weighted support vector machine (SVM) that introduces label shift, a systematic procedure is derived for applying oversampling and weighted SVM to extremely imbalanced datasets with a cluster-structured positive class. This method formalizes three intuitions: (i) oversampling should reflect the structure of the positive class; (ii) weights should account for both the imbalance and oversampling ratios; (iii) synthetic samples should carry less weight than the original samples. The proposed method generates synthetic samples from the estimated positive class distribution using a Gaussian mixture model. To prevent overfitting to excessive synthetic samples, different misclassification penalties are assigned to the original positive class, synthetic positive class, and negative class. The proposed method is numerically validated through simulations and an analysis of Republic of Korea Army artillery training data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.