{"title":"直接燃烧噪声:近场和非紧凑性对压力-热量释放一致性的影响","authors":"Sungyoung Ha, Tim Lieuwen","doi":"10.1016/j.combustflame.2024.113811","DOIUrl":null,"url":null,"abstract":"<div><div>There are several mechanisms through which turbulent flames produce sound. In low Mach number, unconfined flows, direct combustion noise – i.e., unsteady gas expansion generated by heat release fluctuations – is known to be a dominant contributor. This study is motivated by the fact that in the farfield, the coherence between spatially integrated heat release fluctuations from acoustically compact flames and direct combustion noise is unity. This suggests that the role of direct combustion noise relative to other sources can be ascertained from the value of the coherence. However, in practice it is difficult to fully satisfy the requirements to achieve a unity coherence, even in cases where direct combustion noise is the dominant noise source. This paper explores the contribution of noncompactness and nearfield effects on coherence. For the noncompactness part, while it is often the case that flames are small relative to a wavelength, they are never infinitesimally small. For the nearfield aspect, it is often not possible or practical to obtain farfield measurements, particularly in confined environments. This paper presents calculations that quantify how these noncompactness and nearfield effects influence coherence values. These calculations provide guidance on frequency ranges over which direct combustion noise will lead to near-unity coherence values, as well as required distances and optimal angles for acoustic instrumentation.</div><div><strong>Novelty and significance statement</strong></div><div>This study presents a theoretical study on the coherence between heat release rate and acoustic pressure fluctuations, which has been mostly overlooked in prior literature. To the extent of the author’s knowledge, this is the first attempt that identify and investigate the inconsistencies between traditional theory and experimental literature on coherence. Results have implications for our previous understanding of the relationship between the heat release rate fluctuations and direct noise, aiding in future studies on combustion noise.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"271 ","pages":"Article 113811"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct combustion noise: Nearfield and non-compactness influences on pressure–heat release coherence\",\"authors\":\"Sungyoung Ha, Tim Lieuwen\",\"doi\":\"10.1016/j.combustflame.2024.113811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>There are several mechanisms through which turbulent flames produce sound. In low Mach number, unconfined flows, direct combustion noise – i.e., unsteady gas expansion generated by heat release fluctuations – is known to be a dominant contributor. This study is motivated by the fact that in the farfield, the coherence between spatially integrated heat release fluctuations from acoustically compact flames and direct combustion noise is unity. This suggests that the role of direct combustion noise relative to other sources can be ascertained from the value of the coherence. However, in practice it is difficult to fully satisfy the requirements to achieve a unity coherence, even in cases where direct combustion noise is the dominant noise source. This paper explores the contribution of noncompactness and nearfield effects on coherence. For the noncompactness part, while it is often the case that flames are small relative to a wavelength, they are never infinitesimally small. For the nearfield aspect, it is often not possible or practical to obtain farfield measurements, particularly in confined environments. This paper presents calculations that quantify how these noncompactness and nearfield effects influence coherence values. These calculations provide guidance on frequency ranges over which direct combustion noise will lead to near-unity coherence values, as well as required distances and optimal angles for acoustic instrumentation.</div><div><strong>Novelty and significance statement</strong></div><div>This study presents a theoretical study on the coherence between heat release rate and acoustic pressure fluctuations, which has been mostly overlooked in prior literature. To the extent of the author’s knowledge, this is the first attempt that identify and investigate the inconsistencies between traditional theory and experimental literature on coherence. Results have implications for our previous understanding of the relationship between the heat release rate fluctuations and direct noise, aiding in future studies on combustion noise.</div></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":\"271 \",\"pages\":\"Article 113811\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010218024005200\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024005200","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Direct combustion noise: Nearfield and non-compactness influences on pressure–heat release coherence
There are several mechanisms through which turbulent flames produce sound. In low Mach number, unconfined flows, direct combustion noise – i.e., unsteady gas expansion generated by heat release fluctuations – is known to be a dominant contributor. This study is motivated by the fact that in the farfield, the coherence between spatially integrated heat release fluctuations from acoustically compact flames and direct combustion noise is unity. This suggests that the role of direct combustion noise relative to other sources can be ascertained from the value of the coherence. However, in practice it is difficult to fully satisfy the requirements to achieve a unity coherence, even in cases where direct combustion noise is the dominant noise source. This paper explores the contribution of noncompactness and nearfield effects on coherence. For the noncompactness part, while it is often the case that flames are small relative to a wavelength, they are never infinitesimally small. For the nearfield aspect, it is often not possible or practical to obtain farfield measurements, particularly in confined environments. This paper presents calculations that quantify how these noncompactness and nearfield effects influence coherence values. These calculations provide guidance on frequency ranges over which direct combustion noise will lead to near-unity coherence values, as well as required distances and optimal angles for acoustic instrumentation.
Novelty and significance statement
This study presents a theoretical study on the coherence between heat release rate and acoustic pressure fluctuations, which has been mostly overlooked in prior literature. To the extent of the author’s knowledge, this is the first attempt that identify and investigate the inconsistencies between traditional theory and experimental literature on coherence. Results have implications for our previous understanding of the relationship between the heat release rate fluctuations and direct noise, aiding in future studies on combustion noise.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.