{"title":"脉冲喷射对煤油燃料超音速燃烧器流场结构和燃烧性能的影响","authors":"Chen Chen , Yunfei Wang , Ye Tian , Weixin Deng","doi":"10.1016/j.actaastro.2024.10.071","DOIUrl":null,"url":null,"abstract":"<div><div>This paper describes the pulse injection of kerosene fuel in a kerosene-fueled supersonic combustor at a Mach number of 3. A high-flow mechanical pulsed injector was utilized to inject kerosene at frequencies ranging from 40 to 212 Hz in experiments. High-speed Schlieren images and wall pressure were employed to analyze the influences of various injection frequencies on the wave family and kerosene combustion performance. Initially, the pulsed injection causes intermittent changes in the wave family after kerosene ignition, leading to combustion instability. However, an optimal injection frequency of 143 Hz stabilizes the wave family. Additionally, pulsed injection reduces the kerosene ignition delay time, with the most notable reduction occurring at 113 Hz. Finally, the average combustion intensity of kerosene with pulse injection is lower than that of steady injection. However, the instantaneous combustion intensity at 143 Hz is similar to steady injection, which constitutes a significant portion of the overall combustion process. In summary, pulse injection of kerosene at 143 Hz could achieve efficient and stable combustion at a Mach number of 3.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 479-493"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of pulse injection on the flow field structure and combustion performance in a kerosene-fueled supersonic combustor\",\"authors\":\"Chen Chen , Yunfei Wang , Ye Tian , Weixin Deng\",\"doi\":\"10.1016/j.actaastro.2024.10.071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper describes the pulse injection of kerosene fuel in a kerosene-fueled supersonic combustor at a Mach number of 3. A high-flow mechanical pulsed injector was utilized to inject kerosene at frequencies ranging from 40 to 212 Hz in experiments. High-speed Schlieren images and wall pressure were employed to analyze the influences of various injection frequencies on the wave family and kerosene combustion performance. Initially, the pulsed injection causes intermittent changes in the wave family after kerosene ignition, leading to combustion instability. However, an optimal injection frequency of 143 Hz stabilizes the wave family. Additionally, pulsed injection reduces the kerosene ignition delay time, with the most notable reduction occurring at 113 Hz. Finally, the average combustion intensity of kerosene with pulse injection is lower than that of steady injection. However, the instantaneous combustion intensity at 143 Hz is similar to steady injection, which constitutes a significant portion of the overall combustion process. In summary, pulse injection of kerosene at 143 Hz could achieve efficient and stable combustion at a Mach number of 3.</div></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":\"226 \",\"pages\":\"Pages 479-493\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094576524006453\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576524006453","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Effects of pulse injection on the flow field structure and combustion performance in a kerosene-fueled supersonic combustor
This paper describes the pulse injection of kerosene fuel in a kerosene-fueled supersonic combustor at a Mach number of 3. A high-flow mechanical pulsed injector was utilized to inject kerosene at frequencies ranging from 40 to 212 Hz in experiments. High-speed Schlieren images and wall pressure were employed to analyze the influences of various injection frequencies on the wave family and kerosene combustion performance. Initially, the pulsed injection causes intermittent changes in the wave family after kerosene ignition, leading to combustion instability. However, an optimal injection frequency of 143 Hz stabilizes the wave family. Additionally, pulsed injection reduces the kerosene ignition delay time, with the most notable reduction occurring at 113 Hz. Finally, the average combustion intensity of kerosene with pulse injection is lower than that of steady injection. However, the instantaneous combustion intensity at 143 Hz is similar to steady injection, which constitutes a significant portion of the overall combustion process. In summary, pulse injection of kerosene at 143 Hz could achieve efficient and stable combustion at a Mach number of 3.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.