Michael Luttmer , Matthias Weigold , Heiko Thaler , Jürgen Dongus , Anton Hopf
{"title":"对先进的白车身金属惰性气体焊接工艺进行数据驱动的质量监测","authors":"Michael Luttmer , Matthias Weigold , Heiko Thaler , Jürgen Dongus , Anton Hopf","doi":"10.1016/j.jmsy.2024.10.013","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, numerous monitoring approaches have been developed in the field of intelligent welding manufacturing to predict quality-related characteristics using process data and artificial intelligence-based techniques. While most investigations have focused on welding steel with conventional gas metal arc welding processes, the welding of aluminum and its alloys using advanced process variants has been less explored. This work addresses this gap by investigating data-driven methods for fault diagnosis and detection in an advanced metal inert gas welding process commonly used in body-in-white manufacturing. To this end, electrical, acoustic, and spectroscopic signals were recorded from numerous welding tests simulating typical fault causes. Various predictive models, ranging from traditional machine learning algorithms to state-of-the-art deep learning techniques, were trained and evaluated for classifying faulty seams and identifying their root causes. The results demonstrate that combining sensor data enhances the performance of predictive models compared to using individual sensors alone. However, a deep learning approach based solely on electrical signals emerged as the best solution for both use cases, considering both the results and practical aspects. Overall, the experiments highlight the significant potential of data-driven techniques to enhance quality monitoring in advanced MIG welding processes, promoting their more widespread adoption in body-in-white manufacturing.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"77 ","pages":"Pages 875-891"},"PeriodicalIF":12.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards data-driven quality monitoring for advanced metal inert gas welding processes in body-in-white\",\"authors\":\"Michael Luttmer , Matthias Weigold , Heiko Thaler , Jürgen Dongus , Anton Hopf\",\"doi\":\"10.1016/j.jmsy.2024.10.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, numerous monitoring approaches have been developed in the field of intelligent welding manufacturing to predict quality-related characteristics using process data and artificial intelligence-based techniques. While most investigations have focused on welding steel with conventional gas metal arc welding processes, the welding of aluminum and its alloys using advanced process variants has been less explored. This work addresses this gap by investigating data-driven methods for fault diagnosis and detection in an advanced metal inert gas welding process commonly used in body-in-white manufacturing. To this end, electrical, acoustic, and spectroscopic signals were recorded from numerous welding tests simulating typical fault causes. Various predictive models, ranging from traditional machine learning algorithms to state-of-the-art deep learning techniques, were trained and evaluated for classifying faulty seams and identifying their root causes. The results demonstrate that combining sensor data enhances the performance of predictive models compared to using individual sensors alone. However, a deep learning approach based solely on electrical signals emerged as the best solution for both use cases, considering both the results and practical aspects. Overall, the experiments highlight the significant potential of data-driven techniques to enhance quality monitoring in advanced MIG welding processes, promoting their more widespread adoption in body-in-white manufacturing.</div></div>\",\"PeriodicalId\":16227,\"journal\":{\"name\":\"Journal of Manufacturing Systems\",\"volume\":\"77 \",\"pages\":\"Pages 875-891\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278612524002383\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612524002383","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Towards data-driven quality monitoring for advanced metal inert gas welding processes in body-in-white
In recent years, numerous monitoring approaches have been developed in the field of intelligent welding manufacturing to predict quality-related characteristics using process data and artificial intelligence-based techniques. While most investigations have focused on welding steel with conventional gas metal arc welding processes, the welding of aluminum and its alloys using advanced process variants has been less explored. This work addresses this gap by investigating data-driven methods for fault diagnosis and detection in an advanced metal inert gas welding process commonly used in body-in-white manufacturing. To this end, electrical, acoustic, and spectroscopic signals were recorded from numerous welding tests simulating typical fault causes. Various predictive models, ranging from traditional machine learning algorithms to state-of-the-art deep learning techniques, were trained and evaluated for classifying faulty seams and identifying their root causes. The results demonstrate that combining sensor data enhances the performance of predictive models compared to using individual sensors alone. However, a deep learning approach based solely on electrical signals emerged as the best solution for both use cases, considering both the results and practical aspects. Overall, the experiments highlight the significant potential of data-driven techniques to enhance quality monitoring in advanced MIG welding processes, promoting their more widespread adoption in body-in-white manufacturing.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.