{"title":"二维 MnNCl-MnNI 侧向异质结构中增强的光电流和自旋电流","authors":"Yudong Zhu, Junyang Qu, Dan Li, Yue Yan, Bin Liu","doi":"10.1016/j.cplett.2024.141735","DOIUrl":null,"url":null,"abstract":"<div><div>First-principles calculations and quantum transport simulations were performed to investigate the photogalvanic effect (PGE) in the high magnetic transition temperature ferromagnetic two-dimensional (2D) semiconductor MnNCl and the 2D lateral MnNI-MnNCl heterostructure. The MnNI-MnNCl heterostructure exhibits significantly enhanced non-centrosymmetric properties, resulting in increased PGE photocurrent and spin current around 0.4 eV. Compared to MnNCl, the photocurrent is amplified by 4–6 orders of magnitude and demonstrates excellent polarization sensitivity, with an extinction ratio reaching 83.92. These results underscore the potential of MnNCl-MnNI lateral heterostructures for use in self-powered, polarization-sensitive infrared detectors.</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"857 ","pages":"Article 141735"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced photocurrent and spin current in Two-Dimensional MnNCl-MnNI lateral heterostructures\",\"authors\":\"Yudong Zhu, Junyang Qu, Dan Li, Yue Yan, Bin Liu\",\"doi\":\"10.1016/j.cplett.2024.141735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>First-principles calculations and quantum transport simulations were performed to investigate the photogalvanic effect (PGE) in the high magnetic transition temperature ferromagnetic two-dimensional (2D) semiconductor MnNCl and the 2D lateral MnNI-MnNCl heterostructure. The MnNI-MnNCl heterostructure exhibits significantly enhanced non-centrosymmetric properties, resulting in increased PGE photocurrent and spin current around 0.4 eV. Compared to MnNCl, the photocurrent is amplified by 4–6 orders of magnitude and demonstrates excellent polarization sensitivity, with an extinction ratio reaching 83.92. These results underscore the potential of MnNCl-MnNI lateral heterostructures for use in self-powered, polarization-sensitive infrared detectors.</div></div>\",\"PeriodicalId\":273,\"journal\":{\"name\":\"Chemical Physics Letters\",\"volume\":\"857 \",\"pages\":\"Article 141735\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009261424006778\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261424006778","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
通过第一性原理计算和量子输运模拟,研究了高磁转变温度铁磁性二维(2D)半导体锰氯化铁和二维横向锰镍钴异质结构中的光电效应(PGE)。MnNI-MnNCl 异质结构的非中心对称特性显著增强,导致 0.4 eV 附近的 PGE 光电流和自旋电流增加。与氯化锰相比,光电流放大了 4-6 个数量级,并表现出极好的极化敏感性,消光比达到 83.92。这些结果凸显了锰氯化锰-锰酸镍横向异质结构在自供电、偏振敏感型红外探测器中的应用潜力。
Enhanced photocurrent and spin current in Two-Dimensional MnNCl-MnNI lateral heterostructures
First-principles calculations and quantum transport simulations were performed to investigate the photogalvanic effect (PGE) in the high magnetic transition temperature ferromagnetic two-dimensional (2D) semiconductor MnNCl and the 2D lateral MnNI-MnNCl heterostructure. The MnNI-MnNCl heterostructure exhibits significantly enhanced non-centrosymmetric properties, resulting in increased PGE photocurrent and spin current around 0.4 eV. Compared to MnNCl, the photocurrent is amplified by 4–6 orders of magnitude and demonstrates excellent polarization sensitivity, with an extinction ratio reaching 83.92. These results underscore the potential of MnNCl-MnNI lateral heterostructures for use in self-powered, polarization-sensitive infrared detectors.
期刊介绍:
Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage.
Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.