{"title":"带有核数据和动力学参数不确定性的奥斯卡沙门-2 事件的稳定性和分岔分析","authors":"A. Dokhane, A. Vasiliev, H. Ferroukhi","doi":"10.1016/j.nucengdes.2024.113678","DOIUrl":null,"url":null,"abstract":"<div><div>The primary aim of the current research is to investigate the impact of nuclear data and kinetic parameters uncertainties on the stability and bifurcation behaviour of the Oskarshamn-2 core under unstable conditions. Utilizing the SHARK-X platform, nuclear data and kinetic parameter uncertainties are propagated in 2-D lattice calculations with CASMO5 and downstream to static and dynamic calculations using SIMULATE3 and SIMULATE-3 K. Results show that, the nuclear data uncertainties have a drastic effect on the stability behaviour of the core when the instability is triggered because the system become highly nonlinear at such conditions. However, more interesting is the qualitative effect on the stability behaviour where the nature of solution changes, i.e. occurrence of bifurcation, from a highly unstable state (diverging oscillation amplitudes) to a highly stable state (rapidly decreasing oscillation amplitudes). This change in the nature of behaviour, i.e. solution, is found to be due to the fact that the stability event occurs very close to the stability boundary of the system and therefore any change in any parameter could be enough to swing the system to the other side of the stability boundary. Concerning kinetic parameters, results show a clearly smaller impact compared to that of nuclear data, leading to uncertainties in the decay ratio and resonance frequency around 2.5 % and 0.2 % respectively. The main effect is variations in oscillation amplitude without altering the nature of the solution.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"430 ","pages":"Article 113678"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and bifurcation analysis of Oskarshamn-2 event with nuclear data and kinetic parameter uncertainties\",\"authors\":\"A. Dokhane, A. Vasiliev, H. Ferroukhi\",\"doi\":\"10.1016/j.nucengdes.2024.113678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The primary aim of the current research is to investigate the impact of nuclear data and kinetic parameters uncertainties on the stability and bifurcation behaviour of the Oskarshamn-2 core under unstable conditions. Utilizing the SHARK-X platform, nuclear data and kinetic parameter uncertainties are propagated in 2-D lattice calculations with CASMO5 and downstream to static and dynamic calculations using SIMULATE3 and SIMULATE-3 K. Results show that, the nuclear data uncertainties have a drastic effect on the stability behaviour of the core when the instability is triggered because the system become highly nonlinear at such conditions. However, more interesting is the qualitative effect on the stability behaviour where the nature of solution changes, i.e. occurrence of bifurcation, from a highly unstable state (diverging oscillation amplitudes) to a highly stable state (rapidly decreasing oscillation amplitudes). This change in the nature of behaviour, i.e. solution, is found to be due to the fact that the stability event occurs very close to the stability boundary of the system and therefore any change in any parameter could be enough to swing the system to the other side of the stability boundary. Concerning kinetic parameters, results show a clearly smaller impact compared to that of nuclear data, leading to uncertainties in the decay ratio and resonance frequency around 2.5 % and 0.2 % respectively. The main effect is variations in oscillation amplitude without altering the nature of the solution.</div></div>\",\"PeriodicalId\":19170,\"journal\":{\"name\":\"Nuclear Engineering and Design\",\"volume\":\"430 \",\"pages\":\"Article 113678\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029549324007787\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324007787","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Stability and bifurcation analysis of Oskarshamn-2 event with nuclear data and kinetic parameter uncertainties
The primary aim of the current research is to investigate the impact of nuclear data and kinetic parameters uncertainties on the stability and bifurcation behaviour of the Oskarshamn-2 core under unstable conditions. Utilizing the SHARK-X platform, nuclear data and kinetic parameter uncertainties are propagated in 2-D lattice calculations with CASMO5 and downstream to static and dynamic calculations using SIMULATE3 and SIMULATE-3 K. Results show that, the nuclear data uncertainties have a drastic effect on the stability behaviour of the core when the instability is triggered because the system become highly nonlinear at such conditions. However, more interesting is the qualitative effect on the stability behaviour where the nature of solution changes, i.e. occurrence of bifurcation, from a highly unstable state (diverging oscillation amplitudes) to a highly stable state (rapidly decreasing oscillation amplitudes). This change in the nature of behaviour, i.e. solution, is found to be due to the fact that the stability event occurs very close to the stability boundary of the system and therefore any change in any parameter could be enough to swing the system to the other side of the stability boundary. Concerning kinetic parameters, results show a clearly smaller impact compared to that of nuclear data, leading to uncertainties in the decay ratio and resonance frequency around 2.5 % and 0.2 % respectively. The main effect is variations in oscillation amplitude without altering the nature of the solution.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.