在数据有限的情况下,对轴承故障进行可解释和可解读的分类和诊断

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
L. Magadán , C. Ruiz-Cárcel , J.C. Granda , F.J. Suárez , A. Starr
{"title":"在数据有限的情况下,对轴承故障进行可解释和可解读的分类和诊断","authors":"L. Magadán ,&nbsp;C. Ruiz-Cárcel ,&nbsp;J.C. Granda ,&nbsp;F.J. Suárez ,&nbsp;A. Starr","doi":"10.1016/j.aei.2024.102909","DOIUrl":null,"url":null,"abstract":"<div><div>Rotating machinery plays an essential role in various industrial processes such as manufacturing, power generation, and transportation. These machines, which include turbines, pumps, motors, compressors, and many others, are the heartbeats of numerous industries. The seamless operation of these machines is critical for the efficiency and productivity of these sectors. However, over time, these machines degrade and can suffer faults. One of the most critical components are bearings, which can suffer different types of faults. This paper presents a novel approach for bearing fault classification and diagnosis under limited data. A Monotonic Smoothed Stacked AutoEncoder (MS2AE) is used to infer a smoothed monotonic health index from raw bearing acceleration data. The MS2AE is trained using only healthy data, so this approach can also be used with recently comisioned equipment that has not failed yet. Then, using the evolution of the health index, a first faulty point is computed, so two stages are identified in the lifespan of the rotating machinery: healthy and faulty. Correlation matrices are computed to show the relationship of the health index with time-domain and frequency-domain features in order to provide explainability and validate the health index construction process. When the health index is classified as faulty, Dynamic Time Warping is applied between healthy samples and faulty samples to extract differences. Finally, based on a 1/3-binary tree 3 level kurtogram, these differences are filtered using a bandpass filter and converted to the frequency domain, where characteristic harmonics are used to identify the type of bearing fault. The explainability provided in the health index construction process makes the system useful in certain industries where black-box AI models cannot be trusted due to strict regulations. The classification and diagnosis system achieves robustness in fault classification under different working conditions by utilizing multiple bearing fault datsets. Its ability to be trained using only healthy data and the interpretability offered, makes it suitable for recently installed rotating machinery in real industrial facilities, without requiring qualified staff.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102909"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable and interpretable bearing fault classification and diagnosis under limited data\",\"authors\":\"L. Magadán ,&nbsp;C. Ruiz-Cárcel ,&nbsp;J.C. Granda ,&nbsp;F.J. Suárez ,&nbsp;A. Starr\",\"doi\":\"10.1016/j.aei.2024.102909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rotating machinery plays an essential role in various industrial processes such as manufacturing, power generation, and transportation. These machines, which include turbines, pumps, motors, compressors, and many others, are the heartbeats of numerous industries. The seamless operation of these machines is critical for the efficiency and productivity of these sectors. However, over time, these machines degrade and can suffer faults. One of the most critical components are bearings, which can suffer different types of faults. This paper presents a novel approach for bearing fault classification and diagnosis under limited data. A Monotonic Smoothed Stacked AutoEncoder (MS2AE) is used to infer a smoothed monotonic health index from raw bearing acceleration data. The MS2AE is trained using only healthy data, so this approach can also be used with recently comisioned equipment that has not failed yet. Then, using the evolution of the health index, a first faulty point is computed, so two stages are identified in the lifespan of the rotating machinery: healthy and faulty. Correlation matrices are computed to show the relationship of the health index with time-domain and frequency-domain features in order to provide explainability and validate the health index construction process. When the health index is classified as faulty, Dynamic Time Warping is applied between healthy samples and faulty samples to extract differences. Finally, based on a 1/3-binary tree 3 level kurtogram, these differences are filtered using a bandpass filter and converted to the frequency domain, where characteristic harmonics are used to identify the type of bearing fault. The explainability provided in the health index construction process makes the system useful in certain industries where black-box AI models cannot be trusted due to strict regulations. The classification and diagnosis system achieves robustness in fault classification under different working conditions by utilizing multiple bearing fault datsets. Its ability to be trained using only healthy data and the interpretability offered, makes it suitable for recently installed rotating machinery in real industrial facilities, without requiring qualified staff.</div></div>\",\"PeriodicalId\":50941,\"journal\":{\"name\":\"Advanced Engineering Informatics\",\"volume\":\"62 \",\"pages\":\"Article 102909\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1474034624005603\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624005603","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

旋转机械在制造、发电和运输等各种工业流程中发挥着至关重要的作用。这些机器包括涡轮机、泵、电机、压缩机等,是众多行业的心脏。这些机器的无缝运行对这些行业的效率和生产力至关重要。然而,随着时间的推移,这些机器会出现退化和故障。轴承是最关键的部件之一,可能会出现不同类型的故障。本文提出了一种在有限数据条件下进行轴承故障分类和诊断的新方法。单调平滑叠加自动编码器(MS2AE)用于从原始轴承加速度数据中推断平滑单调健康指数。MS2AE 仅使用健康数据进行训练,因此这种方法也可用于近期调试的尚未发生故障的设备。然后,利用健康指数的变化计算出第一个故障点,从而确定旋转机械寿命的两个阶段:健康和故障。通过计算相关矩阵来显示健康指数与时域和频域特征之间的关系,以提供可解释性并验证健康指数的构建过程。当健康指数被归类为故障时,将在健康样本和故障样本之间应用动态时间扭曲来提取差异。最后,根据 1/3 二叉树 3 级峰峰图,使用带通滤波器对这些差异进行过滤,并转换到频域,在频域中使用特征谐波来识别轴承故障的类型。健康指数构建过程中提供的可解释性使该系统在某些行业中非常有用,这些行业由于严格的规定而无法信任黑盒人工智能模型。该分类和诊断系统通过利用多个轴承故障数据集,实现了不同工作条件下故障分类的鲁棒性。该系统只需使用健康数据进行训练,并具有可解释性,因此适用于实际工业设施中新近安装的旋转机械,而无需合格的工作人员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explainable and interpretable bearing fault classification and diagnosis under limited data
Rotating machinery plays an essential role in various industrial processes such as manufacturing, power generation, and transportation. These machines, which include turbines, pumps, motors, compressors, and many others, are the heartbeats of numerous industries. The seamless operation of these machines is critical for the efficiency and productivity of these sectors. However, over time, these machines degrade and can suffer faults. One of the most critical components are bearings, which can suffer different types of faults. This paper presents a novel approach for bearing fault classification and diagnosis under limited data. A Monotonic Smoothed Stacked AutoEncoder (MS2AE) is used to infer a smoothed monotonic health index from raw bearing acceleration data. The MS2AE is trained using only healthy data, so this approach can also be used with recently comisioned equipment that has not failed yet. Then, using the evolution of the health index, a first faulty point is computed, so two stages are identified in the lifespan of the rotating machinery: healthy and faulty. Correlation matrices are computed to show the relationship of the health index with time-domain and frequency-domain features in order to provide explainability and validate the health index construction process. When the health index is classified as faulty, Dynamic Time Warping is applied between healthy samples and faulty samples to extract differences. Finally, based on a 1/3-binary tree 3 level kurtogram, these differences are filtered using a bandpass filter and converted to the frequency domain, where characteristic harmonics are used to identify the type of bearing fault. The explainability provided in the health index construction process makes the system useful in certain industries where black-box AI models cannot be trusted due to strict regulations. The classification and diagnosis system achieves robustness in fault classification under different working conditions by utilizing multiple bearing fault datsets. Its ability to be trained using only healthy data and the interpretability offered, makes it suitable for recently installed rotating machinery in real industrial facilities, without requiring qualified staff.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信