Zhi Luo , Yuxing Huang , Jinquan Fan, Erchao Li, Liqiao Chen, Xiaodan Wang
{"title":"构建并综合分析大口鲈细胞中 miRNA-mRNA 对盐度胁迫的响应","authors":"Zhi Luo , Yuxing Huang , Jinquan Fan, Erchao Li, Liqiao Chen, Xiaodan Wang","doi":"10.1016/j.cbd.2024.101350","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the genetic response of tilapia (<em>Oreochromis mossambicus</em>) brain cells to hypertonic stress, focusing on miRNAs regulation. Three hundred and thirty-one known miRNAs and 163 novel miRNAs which responded to hypertonic stress were identified by high-throughput sequencing in tilapia brain cells. Differential expression analysis revealed that 16 miRNAs were significantly upregulated, while 11 miRNAs were significantly downregulated. These differentially expressed miRNAs are closely related to metabolism, immune response, and neural regulation. The target genes of these miRNAs are implicated in neurotrophic and synaptic signaling pathways, potentially affecting metabolic and apoptotic processes. GO and KEGG enrichment analyses provided insights into the biological processes and pathways affected by hypertonic stress. Furthermore, correlation analysis between mRNA and miRNA highlighted miRNA-mRNA interactions related to cell cycle and apoptosis regulation. These results indicated significant changes of miRNA expression under hypertonic stress and their crucial role in osmotic pressure regulation. This study offers a basis for further exploration of miRNA functions and molecular mechanisms in tilapia, potentially informing practices for aquaculture in challenging environments such as saline-alkaline waters.</div></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction and integrative analysis of miRNA-mRNA response to salinity stress in Oreochromis mossambicus cells\",\"authors\":\"Zhi Luo , Yuxing Huang , Jinquan Fan, Erchao Li, Liqiao Chen, Xiaodan Wang\",\"doi\":\"10.1016/j.cbd.2024.101350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigated the genetic response of tilapia (<em>Oreochromis mossambicus</em>) brain cells to hypertonic stress, focusing on miRNAs regulation. Three hundred and thirty-one known miRNAs and 163 novel miRNAs which responded to hypertonic stress were identified by high-throughput sequencing in tilapia brain cells. Differential expression analysis revealed that 16 miRNAs were significantly upregulated, while 11 miRNAs were significantly downregulated. These differentially expressed miRNAs are closely related to metabolism, immune response, and neural regulation. The target genes of these miRNAs are implicated in neurotrophic and synaptic signaling pathways, potentially affecting metabolic and apoptotic processes. GO and KEGG enrichment analyses provided insights into the biological processes and pathways affected by hypertonic stress. Furthermore, correlation analysis between mRNA and miRNA highlighted miRNA-mRNA interactions related to cell cycle and apoptosis regulation. These results indicated significant changes of miRNA expression under hypertonic stress and their crucial role in osmotic pressure regulation. This study offers a basis for further exploration of miRNA functions and molecular mechanisms in tilapia, potentially informing practices for aquaculture in challenging environments such as saline-alkaline waters.</div></div>\",\"PeriodicalId\":55235,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology D-Genomics & Proteomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology D-Genomics & Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1744117X24001631\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X24001631","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Construction and integrative analysis of miRNA-mRNA response to salinity stress in Oreochromis mossambicus cells
This study investigated the genetic response of tilapia (Oreochromis mossambicus) brain cells to hypertonic stress, focusing on miRNAs regulation. Three hundred and thirty-one known miRNAs and 163 novel miRNAs which responded to hypertonic stress were identified by high-throughput sequencing in tilapia brain cells. Differential expression analysis revealed that 16 miRNAs were significantly upregulated, while 11 miRNAs were significantly downregulated. These differentially expressed miRNAs are closely related to metabolism, immune response, and neural regulation. The target genes of these miRNAs are implicated in neurotrophic and synaptic signaling pathways, potentially affecting metabolic and apoptotic processes. GO and KEGG enrichment analyses provided insights into the biological processes and pathways affected by hypertonic stress. Furthermore, correlation analysis between mRNA and miRNA highlighted miRNA-mRNA interactions related to cell cycle and apoptosis regulation. These results indicated significant changes of miRNA expression under hypertonic stress and their crucial role in osmotic pressure regulation. This study offers a basis for further exploration of miRNA functions and molecular mechanisms in tilapia, potentially informing practices for aquaculture in challenging environments such as saline-alkaline waters.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.