Hongliang Lu , Chao Lu , Haoyang Wang , Jianwei Gong , Meixin Zhu , Hai Yang
{"title":"通过后继表征实现自动驾驶运动规划的场景级知识转移","authors":"Hongliang Lu , Chao Lu , Haoyang Wang , Jianwei Gong , Meixin Zhu , Hai Yang","doi":"10.1016/j.trc.2024.104899","DOIUrl":null,"url":null,"abstract":"<div><div>For autonomous vehicles, transfer learning can enhance performance by making better use of previously learned knowledge in newly encountered scenarios, which holds great promise for improving the performance of motion planning. However, previous practices using transfer learning are data-level, which is mainly achieved by introducing extra data and expanding experience. Such data-level consideration depends heavily on the quality and quantity of data, failing to take into account the scenario-level features behind similar scenarios. In this paper, we provide a scenario-level knowledge transfer framework for motion planning of autonomous driving, named SceTL. By capitalizing on successor representation, a general scenario-level knowledge among similar scenarios can be captured and thereby recycled in different traffic scenarios to empower motion planning. To verify the efficacy of our framework, a method that combines SceTL and classic artificial potential field (APF), named SceTL-APF, is proposed to conduct global planning for navigation in static scenarios. Meanwhile, a local planning method combining SceTL and motion primitives (MP), SceTL-MP, is developed for dynamic scenarios. Both simulated and realistic data are used for verification. Experimental results demonstrate that SceTL can facilitate the scenario-level knowledge transfer for both SceTL-APF and SceTL-MP, characterized by better adaptivity and faster computation speed compared with existing motion planning methods.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scenario-level knowledge transfer for motion planning of autonomous driving via successor representation\",\"authors\":\"Hongliang Lu , Chao Lu , Haoyang Wang , Jianwei Gong , Meixin Zhu , Hai Yang\",\"doi\":\"10.1016/j.trc.2024.104899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For autonomous vehicles, transfer learning can enhance performance by making better use of previously learned knowledge in newly encountered scenarios, which holds great promise for improving the performance of motion planning. However, previous practices using transfer learning are data-level, which is mainly achieved by introducing extra data and expanding experience. Such data-level consideration depends heavily on the quality and quantity of data, failing to take into account the scenario-level features behind similar scenarios. In this paper, we provide a scenario-level knowledge transfer framework for motion planning of autonomous driving, named SceTL. By capitalizing on successor representation, a general scenario-level knowledge among similar scenarios can be captured and thereby recycled in different traffic scenarios to empower motion planning. To verify the efficacy of our framework, a method that combines SceTL and classic artificial potential field (APF), named SceTL-APF, is proposed to conduct global planning for navigation in static scenarios. Meanwhile, a local planning method combining SceTL and motion primitives (MP), SceTL-MP, is developed for dynamic scenarios. Both simulated and realistic data are used for verification. Experimental results demonstrate that SceTL can facilitate the scenario-level knowledge transfer for both SceTL-APF and SceTL-MP, characterized by better adaptivity and faster computation speed compared with existing motion planning methods.</div></div>\",\"PeriodicalId\":54417,\"journal\":{\"name\":\"Transportation Research Part C-Emerging Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part C-Emerging Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968090X24004200\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X24004200","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Scenario-level knowledge transfer for motion planning of autonomous driving via successor representation
For autonomous vehicles, transfer learning can enhance performance by making better use of previously learned knowledge in newly encountered scenarios, which holds great promise for improving the performance of motion planning. However, previous practices using transfer learning are data-level, which is mainly achieved by introducing extra data and expanding experience. Such data-level consideration depends heavily on the quality and quantity of data, failing to take into account the scenario-level features behind similar scenarios. In this paper, we provide a scenario-level knowledge transfer framework for motion planning of autonomous driving, named SceTL. By capitalizing on successor representation, a general scenario-level knowledge among similar scenarios can be captured and thereby recycled in different traffic scenarios to empower motion planning. To verify the efficacy of our framework, a method that combines SceTL and classic artificial potential field (APF), named SceTL-APF, is proposed to conduct global planning for navigation in static scenarios. Meanwhile, a local planning method combining SceTL and motion primitives (MP), SceTL-MP, is developed for dynamic scenarios. Both simulated and realistic data are used for verification. Experimental results demonstrate that SceTL can facilitate the scenario-level knowledge transfer for both SceTL-APF and SceTL-MP, characterized by better adaptivity and faster computation speed compared with existing motion planning methods.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.