肿瘤侵袭动力学的计算见解:有限元方法

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Saba Irum , Naif Almakayeel , Wejdan Deebani
{"title":"肿瘤侵袭动力学的计算见解:有限元方法","authors":"Saba Irum ,&nbsp;Naif Almakayeel ,&nbsp;Wejdan Deebani","doi":"10.1016/j.matcom.2024.10.026","DOIUrl":null,"url":null,"abstract":"<div><div>The finite element scheme is proposed and analyzed for the solution of an acid-mediated tumor invasion model. The reaction–diffusion equation shows the evolution in the tumor cell density, <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> ions concentration, and healthy tissue density over time. The coupled non-linear partial differential equations are discretized in time with the implicit Euler method and in space with standard Galerkin finite element. To solve the non-linear and coupled terms of the system a fixed point iteration scheme is presented. Moreover, a mass-lumped scheme is adopted to reduce the computation cost. The cut-off method is used to compute the bounded solutions of the PDEs. Finally, The effects of proliferation rate and healthy tissue degradation rate are investigated.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational insights into tumor invasion dynamics: A finite element approach\",\"authors\":\"Saba Irum ,&nbsp;Naif Almakayeel ,&nbsp;Wejdan Deebani\",\"doi\":\"10.1016/j.matcom.2024.10.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The finite element scheme is proposed and analyzed for the solution of an acid-mediated tumor invasion model. The reaction–diffusion equation shows the evolution in the tumor cell density, <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> ions concentration, and healthy tissue density over time. The coupled non-linear partial differential equations are discretized in time with the implicit Euler method and in space with standard Galerkin finite element. To solve the non-linear and coupled terms of the system a fixed point iteration scheme is presented. Moreover, a mass-lumped scheme is adopted to reduce the computation cost. The cut-off method is used to compute the bounded solutions of the PDEs. Finally, The effects of proliferation rate and healthy tissue degradation rate are investigated.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424004257\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004257","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

提出并分析了解决酸介导的肿瘤侵袭模型的有限元方案。反应-扩散方程显示了肿瘤细胞密度、H+ 离子浓度和健康组织密度随时间的变化。耦合的非线性偏微分方程在时间上用隐式欧拉法离散,在空间上用标准 Galerkin 有限元法离散。为了解决系统中的非线性和耦合项,提出了一种定点迭代方案。此外,还采用了质量块方案来降低计算成本。截断法用于计算 PDE 的有界解。最后,研究了增殖率和健康组织降解率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational insights into tumor invasion dynamics: A finite element approach
The finite element scheme is proposed and analyzed for the solution of an acid-mediated tumor invasion model. The reaction–diffusion equation shows the evolution in the tumor cell density, H+ ions concentration, and healthy tissue density over time. The coupled non-linear partial differential equations are discretized in time with the implicit Euler method and in space with standard Galerkin finite element. To solve the non-linear and coupled terms of the system a fixed point iteration scheme is presented. Moreover, a mass-lumped scheme is adopted to reduce the computation cost. The cut-off method is used to compute the bounded solutions of the PDEs. Finally, The effects of proliferation rate and healthy tissue degradation rate are investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信