{"title":"从 n 维环面到球面的径向对称 σ2,p 谐波映射","authors":"M.S. Shahrokhi-Dehkordi","doi":"10.1016/j.na.2024.113682","DOIUrl":null,"url":null,"abstract":"<div><div>Consider a bounded Lipschitz domain <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> and the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></math></span>-energy functional <span><span><span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></mrow></msub><mrow><mo>[</mo><mi>u</mi><mo>;</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>]</mo></mrow><mo>≔</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mrow><mo>|</mo></mrow><mo>∇</mo><mi>u</mi><mo>∧</mo><mo>∇</mo><msup><mrow><mi>u</mi><mrow><mo>|</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></mrow></math></span></span></span>with <span><math><mrow><mrow><mi>p</mi><mo>∈</mo><mo>]</mo></mrow><mn>1</mn><mo>,</mo><mrow><mi>∞</mi><mo>]</mo></mrow></mrow></math></span>, defined over the space of admissible Sobolev maps <span><span><span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow><mo>≔</mo><mrow><mo>{</mo><mrow><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn><mi>p</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mo>:</mo><mi>u</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>∂</mi><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>=</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow></mfrac></mrow><mo>}</mo></mrow><mo>.</mo></mrow></math></span></span></span>In this paper, we investigate the multiplicity and uniqueness of extremals and strong local minimisers of the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></math></span>-energy functional <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></mrow></msub><mrow><mo>[</mo><mi>⋅</mi><mo>,</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>]</mo></mrow></mrow></math></span> in <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Our focus is on the space of admissible Sobolev maps and a topological class of maps known as spherical twists in connection with the Euler–Lagrange equations associated with the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></math></span>-energy functional over <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, referred to as <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></math></span>-harmonic map equation on <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Our main result reveals a surprising difference between even and odd dimensions, showing <em>infinitely</em> many smooth solutions in even dimensions and only <em>one</em> in odd dimensions. This result is based on a careful analysis of the full versus restricted Euler–Lagrange equations.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113682"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radially symmetric σ2,p-harmonic maps from n-dimensional annuli into sphere\",\"authors\":\"M.S. Shahrokhi-Dehkordi\",\"doi\":\"10.1016/j.na.2024.113682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Consider a bounded Lipschitz domain <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> and the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></math></span>-energy functional <span><span><span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></mrow></msub><mrow><mo>[</mo><mi>u</mi><mo>;</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>]</mo></mrow><mo>≔</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mrow><mo>|</mo></mrow><mo>∇</mo><mi>u</mi><mo>∧</mo><mo>∇</mo><msup><mrow><mi>u</mi><mrow><mo>|</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></mrow></math></span></span></span>with <span><math><mrow><mrow><mi>p</mi><mo>∈</mo><mo>]</mo></mrow><mn>1</mn><mo>,</mo><mrow><mi>∞</mi><mo>]</mo></mrow></mrow></math></span>, defined over the space of admissible Sobolev maps <span><span><span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow><mo>≔</mo><mrow><mo>{</mo><mrow><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn><mi>p</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mo>:</mo><mi>u</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>∂</mi><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>=</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow></mfrac></mrow><mo>}</mo></mrow><mo>.</mo></mrow></math></span></span></span>In this paper, we investigate the multiplicity and uniqueness of extremals and strong local minimisers of the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></math></span>-energy functional <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></mrow></msub><mrow><mo>[</mo><mi>⋅</mi><mo>,</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>]</mo></mrow></mrow></math></span> in <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Our focus is on the space of admissible Sobolev maps and a topological class of maps known as spherical twists in connection with the Euler–Lagrange equations associated with the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></math></span>-energy functional over <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, referred to as <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></math></span>-harmonic map equation on <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Our main result reveals a surprising difference between even and odd dimensions, showing <em>infinitely</em> many smooth solutions in even dimensions and only <em>one</em> in odd dimensions. This result is based on a careful analysis of the full versus restricted Euler–Lagrange equations.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"251 \",\"pages\":\"Article 113682\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24002013\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24002013","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Radially symmetric σ2,p-harmonic maps from n-dimensional annuli into sphere
Consider a bounded Lipschitz domain and the -energy functional with , defined over the space of admissible Sobolev maps In this paper, we investigate the multiplicity and uniqueness of extremals and strong local minimisers of the -energy functional in . Our focus is on the space of admissible Sobolev maps and a topological class of maps known as spherical twists in connection with the Euler–Lagrange equations associated with the -energy functional over , referred to as -harmonic map equation on . Our main result reveals a surprising difference between even and odd dimensions, showing infinitely many smooth solutions in even dimensions and only one in odd dimensions. This result is based on a careful analysis of the full versus restricted Euler–Lagrange equations.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.