Zhixin Hua , Yitao Jiao , Tianyu Zhang , Zheng Wang , Yuying Shang , Huaibo Song
{"title":"使用旋转 YOLOv5 深度学习网络自动定位和识别马匹冷冻品牌","authors":"Zhixin Hua , Yitao Jiao , Tianyu Zhang , Zheng Wang , Yuying Shang , Huaibo Song","doi":"10.1016/j.aiia.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>Individual livestock identification is of great importance to precision livestock farming. Liquid nitrogen freezing labeled horse brand is an effective way for livestock individual identification. Along with various technological developments, deep-learning-based methods have been applied in such individual marking recognition. In this research, a deep learning method for oriented horse brand location and recognition was proposed. Firstly, Rotational YOLOv5 (R-YOLOv5) was adopted to locate the oriented horse brand, then the cropped images of the brand area were trained by YOLOv5 for number recognition. In the first step, unlike classical detection methods, R-YOLOv5 introduced the orientation into the YOLO framework by integrating Circle Smooth Label (CSL). Besides, Coordinate Attention (CA) was added to raise the attention to positional information in the network. These improvements enhanced the accuracy of detecting oriented brands. In the second step, number recognition was considered as a target detection task because of the requirement of accurate recognition. Finally, the whole brand number was obtained according to the sequences of each detection box position. The experiment results showed that R-YOLOv5 outperformed other rotating target detection algorithms, and the AP (Average Accuracy) was 95.6 %, the FLOPs were 17.4 G, the detection speed was 14.3 fps. As for the results of number recognition, the mAP (mean Average Accuracy) was 95.77 %, the weight size was 13.71 MB, and the detection speed was 68.6 fps. The two-step method can accurately identify brand numbers with complex backgrounds. It also provides a stable and lightweight method for livestock individual identification.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"14 ","pages":"Pages 21-30"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic location and recognition of horse freezing brand using rotational YOLOv5 deep learning network\",\"authors\":\"Zhixin Hua , Yitao Jiao , Tianyu Zhang , Zheng Wang , Yuying Shang , Huaibo Song\",\"doi\":\"10.1016/j.aiia.2024.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Individual livestock identification is of great importance to precision livestock farming. Liquid nitrogen freezing labeled horse brand is an effective way for livestock individual identification. Along with various technological developments, deep-learning-based methods have been applied in such individual marking recognition. In this research, a deep learning method for oriented horse brand location and recognition was proposed. Firstly, Rotational YOLOv5 (R-YOLOv5) was adopted to locate the oriented horse brand, then the cropped images of the brand area were trained by YOLOv5 for number recognition. In the first step, unlike classical detection methods, R-YOLOv5 introduced the orientation into the YOLO framework by integrating Circle Smooth Label (CSL). Besides, Coordinate Attention (CA) was added to raise the attention to positional information in the network. These improvements enhanced the accuracy of detecting oriented brands. In the second step, number recognition was considered as a target detection task because of the requirement of accurate recognition. Finally, the whole brand number was obtained according to the sequences of each detection box position. The experiment results showed that R-YOLOv5 outperformed other rotating target detection algorithms, and the AP (Average Accuracy) was 95.6 %, the FLOPs were 17.4 G, the detection speed was 14.3 fps. As for the results of number recognition, the mAP (mean Average Accuracy) was 95.77 %, the weight size was 13.71 MB, and the detection speed was 68.6 fps. The two-step method can accurately identify brand numbers with complex backgrounds. It also provides a stable and lightweight method for livestock individual identification.</div></div>\",\"PeriodicalId\":52814,\"journal\":{\"name\":\"Artificial Intelligence in Agriculture\",\"volume\":\"14 \",\"pages\":\"Pages 21-30\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Agriculture\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589721724000370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721724000370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Automatic location and recognition of horse freezing brand using rotational YOLOv5 deep learning network
Individual livestock identification is of great importance to precision livestock farming. Liquid nitrogen freezing labeled horse brand is an effective way for livestock individual identification. Along with various technological developments, deep-learning-based methods have been applied in such individual marking recognition. In this research, a deep learning method for oriented horse brand location and recognition was proposed. Firstly, Rotational YOLOv5 (R-YOLOv5) was adopted to locate the oriented horse brand, then the cropped images of the brand area were trained by YOLOv5 for number recognition. In the first step, unlike classical detection methods, R-YOLOv5 introduced the orientation into the YOLO framework by integrating Circle Smooth Label (CSL). Besides, Coordinate Attention (CA) was added to raise the attention to positional information in the network. These improvements enhanced the accuracy of detecting oriented brands. In the second step, number recognition was considered as a target detection task because of the requirement of accurate recognition. Finally, the whole brand number was obtained according to the sequences of each detection box position. The experiment results showed that R-YOLOv5 outperformed other rotating target detection algorithms, and the AP (Average Accuracy) was 95.6 %, the FLOPs were 17.4 G, the detection speed was 14.3 fps. As for the results of number recognition, the mAP (mean Average Accuracy) was 95.77 %, the weight size was 13.71 MB, and the detection speed was 68.6 fps. The two-step method can accurately identify brand numbers with complex backgrounds. It also provides a stable and lightweight method for livestock individual identification.