可重构纳米晶体的柯肯达尔效应驱动可逆化学转化

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hou-Ming Xu, Chao Gu, Gang Wang, Pengfei Nan, Jian-Ding Zhang, Lei Shi, Shi-Kui Han*, Binghui Ge, Yang-Gang Wang, Jun Li and Shu-Hong Yu*, 
{"title":"可重构纳米晶体的柯肯达尔效应驱动可逆化学转化","authors":"Hou-Ming Xu,&nbsp;Chao Gu,&nbsp;Gang Wang,&nbsp;Pengfei Nan,&nbsp;Jian-Ding Zhang,&nbsp;Lei Shi,&nbsp;Shi-Kui Han*,&nbsp;Binghui Ge,&nbsp;Yang-Gang Wang,&nbsp;Jun Li and Shu-Hong Yu*,&nbsp;","doi":"10.1021/jacs.4c1025210.1021/jacs.4c10252","DOIUrl":null,"url":null,"abstract":"<p >The potential universality of chemical transformation principles makes it a powerful tool for nanocrystal (NC) synthesis. An example is the nanoscale Kirkendall effect, which serves as a guideline for the construction of hollow structures with different properties compared to their solid counterparts. However, even this general process is still limited in material scope, structural complexity, and, in particular, transformations beyond the conventional solid-to-hollow process. We demonstrate in this work an extension of the Kirkendall effect that drives reversible structural and phase transformations between metastable metal chalcogenides (MCs) and metal phosphides (MPs). Starting from Ni<sub>3</sub>S<sub>4</sub>/Cu<sub>1.94</sub>S NCs as the initial frameworks, ligand-regulated sequential extractions and diffusion of host/guest (S<sup>2–</sup>/P<sup>3–</sup>) anions between Ni<sub>3</sub>S<sub>4</sub>/Cu<sub>1.94</sub>S and Ni<sub>2</sub>P/Cu<sub>3</sub>P phases enable solid-to-hollow-to-solid structural motif evolution while retaining the overall morphology of the NC. An in-depth mechanistic study reveals that the transformation between metastable MCs and MPs occurs through a combination of ligand-dependent kinetic control and anion mixing-induced thermodynamic control. This strategy provides a robust platform for creating a library of reconfigurable NCs with tunable compositions, structures, and interfaces.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 44","pages":"30372–30379 30372–30379"},"PeriodicalIF":14.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kirkendall Effect-Driven Reversible Chemical Transformation for Reconfigurable Nanocrystals\",\"authors\":\"Hou-Ming Xu,&nbsp;Chao Gu,&nbsp;Gang Wang,&nbsp;Pengfei Nan,&nbsp;Jian-Ding Zhang,&nbsp;Lei Shi,&nbsp;Shi-Kui Han*,&nbsp;Binghui Ge,&nbsp;Yang-Gang Wang,&nbsp;Jun Li and Shu-Hong Yu*,&nbsp;\",\"doi\":\"10.1021/jacs.4c1025210.1021/jacs.4c10252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The potential universality of chemical transformation principles makes it a powerful tool for nanocrystal (NC) synthesis. An example is the nanoscale Kirkendall effect, which serves as a guideline for the construction of hollow structures with different properties compared to their solid counterparts. However, even this general process is still limited in material scope, structural complexity, and, in particular, transformations beyond the conventional solid-to-hollow process. We demonstrate in this work an extension of the Kirkendall effect that drives reversible structural and phase transformations between metastable metal chalcogenides (MCs) and metal phosphides (MPs). Starting from Ni<sub>3</sub>S<sub>4</sub>/Cu<sub>1.94</sub>S NCs as the initial frameworks, ligand-regulated sequential extractions and diffusion of host/guest (S<sup>2–</sup>/P<sup>3–</sup>) anions between Ni<sub>3</sub>S<sub>4</sub>/Cu<sub>1.94</sub>S and Ni<sub>2</sub>P/Cu<sub>3</sub>P phases enable solid-to-hollow-to-solid structural motif evolution while retaining the overall morphology of the NC. An in-depth mechanistic study reveals that the transformation between metastable MCs and MPs occurs through a combination of ligand-dependent kinetic control and anion mixing-induced thermodynamic control. This strategy provides a robust platform for creating a library of reconfigurable NCs with tunable compositions, structures, and interfaces.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 44\",\"pages\":\"30372–30379 30372–30379\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c10252\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c10252","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

化学转化原理的潜在普遍性使其成为纳米晶体(NC)合成的有力工具。纳米级 Kirkendall 效应就是一个例子,它是构建具有不同于实心结构特性的空心结构的指导原则。然而,即使是这种通用工艺,在材料范围、结构复杂性,特别是在传统的实心到空心工艺之外的转化方面,仍然受到限制。在这项工作中,我们展示了柯肯达尔效应的扩展,该效应推动了可蜕变金属瑀(MCs)和金属磷化物(MPs)之间的可逆结构和相变。从作为初始框架的 Ni3S4/Cu1.94S NC 开始,配体调控的主/客(S2-/P3-)阴离子在 Ni3S4/Cu1.94S 和 Ni2P/Cu3P 相之间的顺序提取和扩散实现了固态到空心再到固态的结构模式演变,同时保留了 NC 的整体形态。深入的机理研究揭示出,可蜕变的 MCs 和 MPs 之间的转变是通过配体依赖的动力学控制和阴离子混合诱导的热力学控制相结合实现的。这种策略为创建具有可调成分、结构和界面的可重构 NC 库提供了一个强大的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Kirkendall Effect-Driven Reversible Chemical Transformation for Reconfigurable Nanocrystals

Kirkendall Effect-Driven Reversible Chemical Transformation for Reconfigurable Nanocrystals

The potential universality of chemical transformation principles makes it a powerful tool for nanocrystal (NC) synthesis. An example is the nanoscale Kirkendall effect, which serves as a guideline for the construction of hollow structures with different properties compared to their solid counterparts. However, even this general process is still limited in material scope, structural complexity, and, in particular, transformations beyond the conventional solid-to-hollow process. We demonstrate in this work an extension of the Kirkendall effect that drives reversible structural and phase transformations between metastable metal chalcogenides (MCs) and metal phosphides (MPs). Starting from Ni3S4/Cu1.94S NCs as the initial frameworks, ligand-regulated sequential extractions and diffusion of host/guest (S2–/P3–) anions between Ni3S4/Cu1.94S and Ni2P/Cu3P phases enable solid-to-hollow-to-solid structural motif evolution while retaining the overall morphology of the NC. An in-depth mechanistic study reveals that the transformation between metastable MCs and MPs occurs through a combination of ligand-dependent kinetic control and anion mixing-induced thermodynamic control. This strategy provides a robust platform for creating a library of reconfigurable NCs with tunable compositions, structures, and interfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信