Tara D. Clayton, Julia M. Fehr, Tavis W. Price, Lev N. Zakharov and Ramesh Jasti*,
{"title":"由受约束炔环丙基苯环三聚化产生的针轮状弯曲芳香族化合物","authors":"Tara D. Clayton, Julia M. Fehr, Tavis W. Price, Lev N. Zakharov and Ramesh Jasti*, ","doi":"10.1021/jacs.4c1227210.1021/jacs.4c12272","DOIUrl":null,"url":null,"abstract":"<p >Carbon nanomaterials composed of curved aromatics, such as carbon nanotubes, are difficult to selectively synthesize and modify precisely. Smaller molecular fragments of curved nanomaterials, such as cycloparaphenylenes, benefit from the precision of bottom-up synthesis, however, efforts to expand the curved molecular framework into even larger structures often rely on restrictive early stage synthetic strategies or difficult to control polymerizations. In this work we report a high yielding, strain-promoted, late-stage modification of a series of [<i>n</i> + 1]CPPs. We show that the conversion of these [<i>n</i> + 1]CPPs into soluble, pinwheel-like multipore carbon nanostructures is achievable via a straightforward and efficient metal-mediated alkyne cyclotrimerization reaction. We provide insight into suitable metals for this transformation, the photophysics of these trimeric molecules, as well as their strain profiles and crystal packing. We also demonstrate the strain-enhanced nature of the reaction under the optimized conditions, showing that strained internal-alkyne [<i>n</i> + 1]CPPs efficiently undergo complete conversion whereas unstrained diphenylacetylene remains completely unreacted. We anticipate that this work will have broader impacts on the study of reactivity in strained-alkyne-containing hydrocarbons, and that access to this new molecular architecture will inspire new research and applications in materials science and related fields.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 44","pages":"30607–30614 30607–30614"},"PeriodicalIF":15.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pinwheel-like Curved Aromatics from the Cyclotrimerization of Strained Alkyne Cycloparaphenylenes\",\"authors\":\"Tara D. Clayton, Julia M. Fehr, Tavis W. Price, Lev N. Zakharov and Ramesh Jasti*, \",\"doi\":\"10.1021/jacs.4c1227210.1021/jacs.4c12272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Carbon nanomaterials composed of curved aromatics, such as carbon nanotubes, are difficult to selectively synthesize and modify precisely. Smaller molecular fragments of curved nanomaterials, such as cycloparaphenylenes, benefit from the precision of bottom-up synthesis, however, efforts to expand the curved molecular framework into even larger structures often rely on restrictive early stage synthetic strategies or difficult to control polymerizations. In this work we report a high yielding, strain-promoted, late-stage modification of a series of [<i>n</i> + 1]CPPs. We show that the conversion of these [<i>n</i> + 1]CPPs into soluble, pinwheel-like multipore carbon nanostructures is achievable via a straightforward and efficient metal-mediated alkyne cyclotrimerization reaction. We provide insight into suitable metals for this transformation, the photophysics of these trimeric molecules, as well as their strain profiles and crystal packing. We also demonstrate the strain-enhanced nature of the reaction under the optimized conditions, showing that strained internal-alkyne [<i>n</i> + 1]CPPs efficiently undergo complete conversion whereas unstrained diphenylacetylene remains completely unreacted. We anticipate that this work will have broader impacts on the study of reactivity in strained-alkyne-containing hydrocarbons, and that access to this new molecular architecture will inspire new research and applications in materials science and related fields.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 44\",\"pages\":\"30607–30614 30607–30614\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c12272\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c12272","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Pinwheel-like Curved Aromatics from the Cyclotrimerization of Strained Alkyne Cycloparaphenylenes
Carbon nanomaterials composed of curved aromatics, such as carbon nanotubes, are difficult to selectively synthesize and modify precisely. Smaller molecular fragments of curved nanomaterials, such as cycloparaphenylenes, benefit from the precision of bottom-up synthesis, however, efforts to expand the curved molecular framework into even larger structures often rely on restrictive early stage synthetic strategies or difficult to control polymerizations. In this work we report a high yielding, strain-promoted, late-stage modification of a series of [n + 1]CPPs. We show that the conversion of these [n + 1]CPPs into soluble, pinwheel-like multipore carbon nanostructures is achievable via a straightforward and efficient metal-mediated alkyne cyclotrimerization reaction. We provide insight into suitable metals for this transformation, the photophysics of these trimeric molecules, as well as their strain profiles and crystal packing. We also demonstrate the strain-enhanced nature of the reaction under the optimized conditions, showing that strained internal-alkyne [n + 1]CPPs efficiently undergo complete conversion whereas unstrained diphenylacetylene remains completely unreacted. We anticipate that this work will have broader impacts on the study of reactivity in strained-alkyne-containing hydrocarbons, and that access to this new molecular architecture will inspire new research and applications in materials science and related fields.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.