利用金属配体的合作性规避金属氢化物形成的动力学障碍

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Charlotte L. Montgomery, Mehmed Z. Ertem, Leo Chevalier and Jillian L. Dempsey*, 
{"title":"利用金属配体的合作性规避金属氢化物形成的动力学障碍","authors":"Charlotte L. Montgomery,&nbsp;Mehmed Z. Ertem,&nbsp;Leo Chevalier and Jillian L. Dempsey*,&nbsp;","doi":"10.1021/jacs.4c0171610.1021/jacs.4c01716","DOIUrl":null,"url":null,"abstract":"<p >We report the two-electron, one-proton mechanism of cobalt hydride formation for the conversion of [Co<sup>III</sup>Cp(P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub>)(CH<sub>3</sub>CN)]<sup>2+</sup> to [HCo<sup>III</sup>Cp(P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub>)]<sup>+</sup>. This complex catalytically converts CO<sub>2</sub> to formate under CO<sub>2</sub> reduction conditions, with hydride formation as a key elementary step. Through a combination of electrochemical measurements, digital simulations, theoretical calculations, and additional mechanistic and thermochemical studies, we outline the explicit role of the P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub> ligand in the proton-coupled electron transfer (PCET) reactivity that leads to hydride formation. We reveal three unique PCET mechanisms, and we show that the amine on the P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub> ligand serves as a kinetically accessible protonation site en route to the thermodynamically favored cobalt hydride. Cyclic voltammograms recorded with proton sources that span a wide range of p<i>K</i><sub>a</sub> values show four distinct regimes where the mechanism changes as a function of acid strength, acid concentration, and timescale between electrochemical steps. Peak shift analysis was used to determine proton transfer rate constants where applicable. This work highlights the astute choices that must be made when designing catalytic systems, including the basicity and kinetic accessibility of protonation sites, acid strength, acid concentration, and timescale between electron transfer steps, to maximize catalyst stability and efficiency.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 44","pages":"30020–30032 30020–30032"},"PeriodicalIF":15.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circumventing Kinetic Barriers to Metal Hydride Formation with Metal–Ligand Cooperativity\",\"authors\":\"Charlotte L. Montgomery,&nbsp;Mehmed Z. Ertem,&nbsp;Leo Chevalier and Jillian L. Dempsey*,&nbsp;\",\"doi\":\"10.1021/jacs.4c0171610.1021/jacs.4c01716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We report the two-electron, one-proton mechanism of cobalt hydride formation for the conversion of [Co<sup>III</sup>Cp(P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub>)(CH<sub>3</sub>CN)]<sup>2+</sup> to [HCo<sup>III</sup>Cp(P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub>)]<sup>+</sup>. This complex catalytically converts CO<sub>2</sub> to formate under CO<sub>2</sub> reduction conditions, with hydride formation as a key elementary step. Through a combination of electrochemical measurements, digital simulations, theoretical calculations, and additional mechanistic and thermochemical studies, we outline the explicit role of the P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub> ligand in the proton-coupled electron transfer (PCET) reactivity that leads to hydride formation. We reveal three unique PCET mechanisms, and we show that the amine on the P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub> ligand serves as a kinetically accessible protonation site en route to the thermodynamically favored cobalt hydride. Cyclic voltammograms recorded with proton sources that span a wide range of p<i>K</i><sub>a</sub> values show four distinct regimes where the mechanism changes as a function of acid strength, acid concentration, and timescale between electrochemical steps. Peak shift analysis was used to determine proton transfer rate constants where applicable. This work highlights the astute choices that must be made when designing catalytic systems, including the basicity and kinetic accessibility of protonation sites, acid strength, acid concentration, and timescale between electron transfer steps, to maximize catalyst stability and efficiency.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 44\",\"pages\":\"30020–30032 30020–30032\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c01716\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c01716","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了[CoIIICp(PPh2NBn2)(CH3CN)]2+ 转化为[HCoIIICp(PPh2NBn2)]+ 时钴氢化物形成的双电子一质子机制。该复合物在二氧化碳还原条件下催化二氧化碳转化为甲酸盐,氢化物的形成是关键的基本步骤。通过结合电化学测量、数字模拟、理论计算以及其他机理和热化学研究,我们概述了 PPh2NBn2 配体在导致氢化物形成的质子耦合电子转移(PCET)反应性中的明确作用。我们揭示了三种独特的 PCET 机制,并表明 PPh2NBn2 配体上的胺是通向热力学上有利的氢化钴的一个动力学可及的质子化位点。用质子源记录的循环伏安图显示了四种截然不同的机制,它们是酸强度、酸浓度和电化学步骤之间时间尺度的函数。在适用的情况下,峰移分析被用来确定质子转移速率常数。这项工作强调了在设计催化系统时必须做出的明智选择,包括质子化位点的碱性和动力学可及性、酸强度、酸浓度和电子转移步骤之间的时间尺度,以最大限度地提高催化剂的稳定性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Circumventing Kinetic Barriers to Metal Hydride Formation with Metal–Ligand Cooperativity

Circumventing Kinetic Barriers to Metal Hydride Formation with Metal–Ligand Cooperativity

We report the two-electron, one-proton mechanism of cobalt hydride formation for the conversion of [CoIIICp(PPh2NBn2)(CH3CN)]2+ to [HCoIIICp(PPh2NBn2)]+. This complex catalytically converts CO2 to formate under CO2 reduction conditions, with hydride formation as a key elementary step. Through a combination of electrochemical measurements, digital simulations, theoretical calculations, and additional mechanistic and thermochemical studies, we outline the explicit role of the PPh2NBn2 ligand in the proton-coupled electron transfer (PCET) reactivity that leads to hydride formation. We reveal three unique PCET mechanisms, and we show that the amine on the PPh2NBn2 ligand serves as a kinetically accessible protonation site en route to the thermodynamically favored cobalt hydride. Cyclic voltammograms recorded with proton sources that span a wide range of pKa values show four distinct regimes where the mechanism changes as a function of acid strength, acid concentration, and timescale between electrochemical steps. Peak shift analysis was used to determine proton transfer rate constants where applicable. This work highlights the astute choices that must be made when designing catalytic systems, including the basicity and kinetic accessibility of protonation sites, acid strength, acid concentration, and timescale between electron transfer steps, to maximize catalyst stability and efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信